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SECTION 1.

INTRODUCTION

PURPOSE OF STUDY

All three military services are developing automated human performance
measurement systems as a part of aviation training devices and for research
on training and human performance. Each research and training development%
program tends to follow its own course, building on what has been done by
each investigator or organization in the past. If no institutional memory
exists, an analysis of what and how to measure starts anew, usually with a

* survey of the literature.

The literature can provide examples of measurement and lists of system
states that have been recorded (cf. Mixon and Moroney 1982); however,
measurement knowledge is embedded in hundreds of technical reports, and the
details needed by a researcher or measurement analyst seldom are provided.
Also, many tasks for research are so constrained that generalization of
measurement may be tenuous. Simply, the "book" on flight performance
measurement has not been written.

An initial goal of this research was to search for a common core of
measurement information which would be needed across many flight tasks and
environments, to provide a basis for partial standardization of measurement
practice, at least for research. But because measurement is information
for a specific purpose, it became evident during the course of the study
that such a lof ty goal might not ae achieved without a thorough analysis of
all flight maneuvers and tasks, along with an identification and analysis
of all research purposes and information needs. The level of effort which
would be required to perform an analysis of this magnitude was well beyond
what could be done within the scope of this study.

Recognizing the difficulties, the investigators were asked to use the
available information and data, known measurement practices, and their own
experience and technical judgment. The purpose of the study, then, became
one of describing common aircrew measurement problems and solutions in the
form of guidelines.

PURPOSE OF REPORT

The purpose of this report is to document general measurement issues
and propose solutions, where possible, recognizing that measurement for all
research cannot be addressed. There are useful measurement tools and
practices that have evolved over the years, and recent breakthroughs which
have improved real-time performance measurement systems. This report is
intended to provide a framework for measurement, and suggest state-of-the-
art approaches. It should be updated as new information and experience
with performance measurement becomes available.

At the onset of the study the investigators were advised to focus on
measurement, not assessment, using the following distinction: Measurement

3.



iz is information about performance. Assessment requires the use of many
sources of information to determine the quality of performance for a
particular purpose, such as the goodness or badness of performance relative
to criteria for training or operations. This clearly was beyond the intent

N of the effort, although there is a need for operational figures of merit
and criteria, as discussed in Section 8. Also, if measurement is viewed as
information for a specific purpose, the distinction blurs somewhat.

ORGANIZATION OF REPORT

This report addresses the measurement of performance of human aircrew
members as controllers of an aircraft system and its subsystems. It assumes
the reader has an Introductory knowledge of aircraft and flight tasks,
specific knowledge of the tasks that are to be investigated, and would use%
this document as a "kit of tools" for guidance on measurement methods. It
also assumes the user has the services of a simulation or instrumentation
engineer to mechanize the rules and algorithms presented here within the

* appropriate reference and computational systems that are to be used.

Section 2 discusses measurement commonality among the various maneuvers
and tasks for all phases of flight. It shows that algorithms for measuring
turns, climbs and descents, accelerations and decelerations would provide a
general measurement capability for tasks performed in nearly one-half of
all phases of military aviation.

Section 3 defines the structure used in this report for describing
measurement in terms of system states, sampling rates, measure segments,
desired values, error data and transformations. Typical system state
variables (often referred to as "parameters") of interest are discussed in
Section 4, along with guidelines for sampling.

Measure segmentation rules are discussed in Section 5. Segmentation of
maneuvers, such as aerobatic and basic fighter maneuvers, is so dependent
on the aircraft and the desired measures that these tasks are discussed

s eparately in Appendix A. Various transformations and the information they
provide are discussed in Section 6, and FORTRAN subroutines for generating
common transforms are listed in Appendix B.

An important use of measurement is to diagnose performance for research
and training. Measurement system intelligence and data requirements for
performance diagnosis are discussed in Section 7. Comments on statistical
data analysis for measurement development purposes are offered in Appendix
C, along with FORTRAN programs. These data analysis methods are unique;
they provide methods for selecting measures from a set of candidates and
overall metrics for use in training and research. This description and
documentation does not appear in any other document in its present form.

Section 8 reviews the flight performance measurement domain, and
current issues in measurement for system design, training, and research.
Whereas earlier sections of the report treat what we know and have learned
recently about measurement, this section discusses what we need to learn to
advance the state-of-the-art. Our conclusions and recommendations are Ain
Section 9.
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SECTION 2.

COMMONALITY ANALYSIS

The purpose of the study was to seek common aircrew performance measure-
ment problems and suggest measurement guidelines where possible. Across
the domain of flight, different types of aircraft fly similar missions and
maneuvers, and many of the same tasks are performed over and over again for
various maneuvers. For example, both fixed wing and helicopter pilots have

track across the ground (or over water), (b) maintain that track within

prescribed limits, (c) arrive at navigational fixes according to flight
plan time estimates, and (d) depart fixes to capture and maintain a new
track, heading or course. Although the accuracy of performance, ease of
workload and specific control techniques for doing the above navigational
fuhctions may depend on the method and system being used for navigation,
the functional tasks repeat over and over again.

This example illustrates that at a functional level, there is a common
core of tasks. The common core of functional tasks may not lead to a
complete, "necessary and sufficient" set of measures for any particular
task, but it should lead to those measures of performance and measurement
processing considerations which an analyst would need to consider in almost
all cases.

An analysis was performed to find the level of task description that
might guide the selection of maneuvers and flight tasks to be used as a
basis for common measurement guidelines. A fully documented, hierarchical
task analysis was well beyond the scope of the ef fort; rather, a judgmental
review of flight missions and tasks was done, based on the experience of the
authors. To find a common core of flight tasks and measurement problems,
f light tasks were reviewed at the "mission" level by aircraft type and at
the "maneuver" level for all aircraft.

COMMON FLIGHT REGIMES BY AIRCRAFT TYPE

Military aviation can be classified into ten arbitrary flight regimes
shown in Table 1. These regimes represent a mixture of training stages and
missions for fixed wing, rotary wing and V/STOL aircraft. Flight regimes

* are not mutually exclusive categories; there are common tasks across the
regimes. Transition includes basic flight tasks, take-off and landing.
Utility and transport missions have been omitted from the list because it
is unnecessary to separate them from transition, navigation and instrument
regimes from a measurement viewpoint. Also, carrier qualification (CQ) is

* considered to be a special case of transition training for the Navy, just
* as Nap of the Earth (NOE) flight for Army rotary wing operations is con-

sidered as a special case of navigation from a measurement viewpoint.

Table 1 shows that V/STOL and f ixed wing aircraf t f ly the same f light
* regimes except airdrop. Within the common flight regimes, V/STOL and fixed

wing aircraft are inseparable except during (a) vertical takeoff, hover and
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landing, (b) transitions to and from forward aerodynamic flight, and (c)
vectoring in forward flight .during air combat.

TABLE 1. FLIGHT REGIMES BY AIRCRAFT TYPE

FghRgmFidWn Aircraft Type

Flight Regime Fixed Win Rotary Wing V/STOL

1. Transition

2. Navigation * * *

3. Formation * * *

4. Instruments * * *

5. Aerobatics * *

6. Basic Fighter Maneuvers * *

7. Air-to-Air Combat * *

8. Air-to-Surface Combat 2* *

9. Air Refueling * .

10. Air Drop *

• Regime commonly flown.

Rotary wing aircraft operate in many of the same flight regimes as
fixed wing aircraft. At present, they do not do (a) aerobatics, (b) basic
fighter maneuvers, (c) air refueling, (d) air drop or (e) air-to-air combat,
although helicopter air-to-air-combat is a possibility in the future. It
is likely that future helicopter air-to-air tactics will differ from
conventional wing tactics, and will require unique measurement.

Insofar as measurement of functional tasks is concerned, the type of
aircraft is of little consequence except in specific regions of unique
capability, such as hovering flight and transitions to and from forward
aerodynamic flight. The ability to hover, translate and transition to
aerodynamic flight affects the measurement of V/STOL and rotary wing
aircraft maneuvers such as takeoff and landing (from land bases or ships).
It also affects the measurement of rotary wing performance of NOE and air-
to-surf ace combat tasks and weapons delivery. Measurement for these flight
tasks and maneuvers should be treated separately.

6 ,, ,-,N,



COMMON MANEUVERS

Flight tasks and maneuvers can be described in many different ways,

ranging from Instructional System Development (ISD) statements of terminal

learning objectives and performance standards to matters of technique (how

to do it) found in training manuals for particular aircraft. If one lists

every flight maneuver that has been given a name, several hundred maneuvers
result. For example, there are cross-wind landings, short field landings,

and no flap landings; in each case the performance objectives are to
contact the runway with (a) a minimum rate of descent, (b) minimum lateral
speed (drift), (c) minimum error from the runway centerline and (d) enough
runway remaining to stop. There are different techniques for landing in

different circumstances which might be the subject of diagnostic measures,

but one would always measure descent rate, drift, centerline error and
distance down the runway for a field landing.

For purposes of maneuver commonality analysis for measurement, general
categories of maneuvers were combined; 75 maneuvers were classified into 12
flight phases shown in Figure 1. Figure 1 is a two dimensional matrix
which illustrates the commonality between all maneuvers. No attempt was
made to quantify the degree of relationship between maneuver pairs; an "x"
simply illustrates a "non-trivial" relationship between each maneuver pair
based on our experience. The highlights of this analysis are discussed in
the following paragraphs:

Basic Flight. Fundamental aircraft maneuvers are to turn, climb and
descend, and accelerate and decelerate (or to hold various combinations of
their rates at given values, which may include zero as in straight and
level flight). The fixed wing pilot controls pitch and roll attitude, yaw,
thrust and drag to do these maneuvers. In forward aerodynamic flight, the
helicopter is controlled the same way as a fixed wing aircraft, except
there is direct lift control with collective, and yaw must be controlled by
the pilot to "trim" the aircraft (e.g. point the aircraft in the direction
it is traveling).

Turns are divided into "normal" and "steep." In a steep turn the
magnitude of the control problem increases dramatically as aircraft lift
vector approaches horizontal, and lift, thrust, and g-loading limits are
approached; expected performance accuracy changes, and different measures

become appropriate. Turns which require about 35 degrees of bank angle or

less (20 degrees for helicopters) are considered normal turns. All others
are considered steep turns.

For purposes of this analysis, a distinction is made between "air

reference" and "ground reference" maneuvers. For example, a 720 degree

steep turn at constant altitude, turn rate and speed is considered an air
referenced maneuver because the turn and speed is to be maintained relative
to the air mass. A constant radius turn around a pylon (on the ground)

would be considered as a ground referenced maneuver during which the pilot
would have to adjust the turn rate for wind drift. Ground referenced
maneuvers may contain both ground and air mass referenced tasks.

* 7
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[Parenthetically, one must know earth axis, aircraft body axis, and
inertial axis coordinate systems and transformations between them when
designing measurement, but it is not necessary to discuss these systems for
purposes of commonality analysis.]

Some basic flight maneuvers are special cases of the fundamental
£maneuvers. The approach to stall and stall recovery are considered as

special cases of acceleration and deceleration, where the usual control
actions might not have the same effect as when the aircraft is at a lower
angle of attack. Stalls and spins are departures from controlled flight;
they require special control actions that are airframe dependent. Takeoff
is a special case of acceleration (and ground referenced turn--no turn,
just hold heading) followed by a climb and acceleration.

It is obvious that the ability of the pilot to turn, climb, descend,
accelerate, approach stall and maneuver the aircraft relative tc the air
mass and ground is fundamental to (and shares much commonality with) the
remaining flight phases and tasks shown in Figure 1. The commonality of
the remaining flight phases with basic flight maneuvers will not be
mentioned in the discussion which follows to avoid redundancy.

Landing Patterns. In general, there are three basic patterns, the box
pattern, the 360 degree overhead, and the straight in; they are all varia-
tions on the theme. The box pattern has four segments, upwind (usually the
take-of f runway centerline extension), crosswind (90 degrees from upwind),
downwind (180 degrees f rom upwind) , base (90 degrees f rom f inal) , and f inal
(the runway heading). The 360 degree overhead pattern has five segments,
initial (starting about three-to-five miles out onl the runway heading but
usually displaced from the final approach course slightly), break (a steep
turn usually abeam the runway to dissipate energy and turn onto downwind),
downwind, base and final. A straight in approach has only one leg, final.

Field Carrier Landing Practice (FCLP) is a special case of the 360
degree overhead approach to simulate day aircraft carrier patterns, where
the speeds and altitudes are lower than the normal 360 overhead approach,
and precise spied, turn and spacing (from other aircraft) control are
emphasized. Day carrier patterns are more like instrument flight maneuvers
than normal airport patterns because of the required precision; however,
visual reference to the carrier is maintained to intercept the FLOLS
(Fresnel Lens Optical Landing System) glideslope reference on the turn to
final. Spacing is most important because the prior aircraft in the pattern
must be cleared from landing area, and typically, many aircraft have to be 4V
recovered in a short time. The night carrier landing pattern is a straight
in approach. These patterns are separated from the basic patterns because
the precision required during carrier approach is much greater (and
suggests slightly different measures) than a normal land-based landing A
pattern.

Landing. It is judgmental where an approach ends and landing begins.
From an instructional viewpoint, approach and landing are one continuous
task; however, from a measurement viewpoint, they can be separated, and it
is useful to do so to develop general measurement algorithms. For this

9



analysis, we assume that the approach ends at the threshold of the approach
end of the runway, or the ramp on an aircraft carrier, and the landing
begins at that point.

There are four classes of landings: field, arrested, carrier and touch
and go. The go-around (or missed approach) is treated arbitrarily as a
special case of landing (although it could be treated just as well as a
special case of takeoff). This reasons for separating these classes of
landings are discussed below:

The f ield landing is the normal landing in which there is a target
.4 airspeed to be at over the runway threshold, an intended touchdown point

beyond the runway threshold, and a flare maneuver will be done. The normal
field landing includes the rollout on the runway, which may require thrust
reversal, braking and parachute deployment for deceleration.

Arrested landing (engaging a crash barrier) may take place at the
approach or departure ends of the runway, may or may not involve a flare,
and may require special procedures which depend on the airframe and the
characteristics of the arrestment device used; for these reasons, arrested
landings are dif ferent f rom normal f ield landing f or measurement purposes,
and have to be treated on a case by case basis.

Carrier landings are precise controlled descents to engage the aircraft
tail hook on a target arrestment cable (usually, number 2 of four cables)
on the carrier deck. There is no flare maneuver, and little last minute
maneuvering is possible. Wind speed and direction over the deck usually is
constant, but there are turbulence and downdraf t ef fects because of carrier
superstructure. Procedures demand application of full thrust on impact so
that power is available if there is no hook engagement (this is called
Bolter). There is no rollout.

Touch and go landings usually are similar to normal field landings, but
the procedures may vary slightly with particular airframes; for example,
full flaps might not be used if a touch and go is contemplated, and the
approach airspeed might (or might not) be different. Once the aircraft
touches down, takeoff power is applied, and the aircraft is reconfigured as
necessary for takeoff. Typically, the aircraft is close to takeoff
rotation speed at touchdown, so reconf iguration (flaps, trim and power) has
to be done quickly. Measurement for touch and go landings may not be a
simple concatenation of field landing and takeoff measures because of the
need for aircraft reconfiguration while rolling, and the possibility that
rotation airspeed may be exceeded when the reconf iguration is taking place;
in short, the measures of importance may change slightly.r

For the same reasons, a go-around maneuver is not just a climb task.
There are intervening tasks to reconfigure the aircraft to an accelerate
and climb configuration (power, flaps, gear and trim) while minimizing
altitude loss but maintaining safe airspeeds. Usually, a go-around is
caused by a misjudged approach or conflicting traffic; avoiding collision
with ground obstacles and the other aircraft are important elements of the
task. If the aircraft is at a minimum fuel state, the go-around procedures

10



may vary slightly from a normal takeoff and climb, necessitating different
measurement.

Although performance of the landing task is dependent on a proper
landing pattern and approach, the landing maneuvers share few common
elements with landing pattern tasks (but share many common elements with
basic flight tasks). .' '

Formation. There are three general tasks in formation flight: joinup,
stationkeeping and separation. The joinup is an intercept problem, where
the pilot has to maneuver the aircraft into an assigned position about the
lead aircraft, which also is moving through the air. Stationkeeping is
maintaining position even though the lead aircraft may maneuver; changes in
position, such as cross-overs or cross-unders are viewed as special cases
of stationkeeping for this analysis. For purposes of measurement, there
are three types of stationkeeping tasks: close, loose and trail.

The purpose of the close formation is to move several aircraft as one
unit through the airspace. The number two, three or four aircraft must
maintain an exact position about the lead aircraft.

The purpose of the loose formation has more to do with tactics and
lookout doctrine than moving several aircraft in one unit of airspace;
here, an approximate position about the lead aircraft is to be maintained
in a more fluid fashion for ground reconnaissance and visual surveillance
of areas the other aircraft cannot see well.

The trail formation is used in some low level flights; here, the
objective is to fly a precise distance behind the lead aircraft, and fly
the exact track over the ground as the lead aircraft (e.g. turning where it
turned, and not at the same time it turned).,g

Separation from a formation may take several forms; usually, there is a
planned procedure for each aircraft to leave the formation at a specific
time (or -the occurence of a specific event), and fly a predetermined flight
profile to insure safe separation of aircraft.

Formation flight shares common elements with landing patterns because
visual discriminations and the control of aircraft relative to the movement
of other aircraft are common tasks.

Refueling. Refueling is similar to formation flight, with the
additional requirement of maintaining contact with the tanker refueling
element while flying close to the tanker. The task is difficult because
the "formation" position places the aircraft to be refueled in a dangerous
position relative to the wingtip vortex, turbulence, and slipstream
aerodynamic effects of the tanker. Also, the weight and balance of both
aircraft are changing during fuel transfer; the stability and control
characteristics of the aircraft being refueled change dramatically, and
fuel transfer and management may impose additional tasks on the pilot or
flight crew. Although there are many common elements with formation
flight, there are additional refueling tasks that require measurement.

lA.
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Navigation. There appear to be four kinds of navigation tasks: dead
reckoing, 7ontact high, contact low and electronic. The fundamental
navigation method is dead reckoning--f lying a course at a given ground
speed for a given time should move an aircraft from a present position to a
predictable new position with certain accuracy. Of course, winds aloft
change, heading may vary, gyros precess, magnetic variation changes, and
over long distances, the curvature of the earth's surface is a factor.
Contact navigation and electronic systems are used to correct the
inaccuracies of dead reckoning.

Contact navigation is the use of visual reference to the terrain and
maps to determine present position. High and low altitude contact
navigation differ slightly. High altitude courses usually are straight
lines or rumb lines, are flown at altitudes which are clear of obstacles,
and would be performed by reference to predominant terrain features, such
as large bodies of water, islands, whole mountain ranges, major rivers, and
urban areas. Low altitude navigation courses may be composed of straight
lines for brief intervals, curved courses (to follow valleys, canyons or
river beds), are flown at altitudes which are not clear of obstacles (and
for Nap-of-the-Earth (NOE) flight, at or below the tree tops), and are
flown by reference to terrain details such as hilltops, river branches,
bridges and culverts, road intersections, and cultural details. High and
low altitude contact navigation differ in workload (frequency of required x
position determinations, number of checkpoints per unit time, and the
required attention to terrain and obstacle avoidance maneuvering). The (
measurement techniques for high and low altitude navigation may vary,
although some common measures such as checkpoint accuracy and flight plan
time accuracy are common.

Dead reckoning navigation can be corrected (or replaced) by electronic
systems. These systems include radio navigation aids such as automatic
direction finding (ADF), visual omni-directional radio range facilities
(VOR), distance measuring equipment (DME), TACAN, radar terrain mapping,
doppler radar and inertial navigation systems. Measures of aircrew
performance using these systems may shift in emphasis from instrument
interpretation and aircraft control performance to data entry and system
management accuracy as the level of automation increases. Data entry and
system operation measures may be needed in addition to course errors,
checkpoint accuracy and flight plan time accuracy if the cause of a
navigation error is to be determined; but, this measurement will be system
specific.

There is commonality between navigation tasks, as illustrated in Figure
1, but little commonality with the maneuvers which have been discussed
above. Navigation is a fundamental task which is required in most of the -

* flight phases in the remainder of Figure 1.

*Instruments. Instrument flight shares a high degree of commonality
with basic flight and navigation tasks. The fundamental difference is that
all maneuvers are done by reference to instruments and electronic systems
alone. Ten types of maneuvers are listed in Figure 1 and discussed briefly
below.
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Basic patterns are simply air referenced profiles which are used to4,.
practice the fundamental maneuvers (turns, climbs, descents, speed and
altitude changes) for precise aircraft control. Unusual attitude recoveries
are for practicing recognition of impending emergency (such as stall or

* exceeding maximum airspeed) situations, and executing a safe recovery with
£ a minimum altitude loss and without overstressing the airframe.

Measurement of an instrument takeoff is similar to measuring a visual
takeoff.* Instrument departures, airways navigation, penetrations, approaches
and missed approaches are measured in the same way that navigation perfor-
mance is measured; there is a high degree of commonality between these
maneuvers and navigation tasks.

The holding pattern task requires unique measurement treatment if diag-
nostic performance information is desired. Fix crossing, turns, outbound
drift correction, inbound turns and drift correction, and inbound course
intercept and tracking all have to be measured in a minimum amount of time
with few data samples. The implementation of automated diagnostic holding
pattern measurement has not been achieved to date.

The final instrument maneuvers are the confidence maneuvers. These are
aerobatic maneuvers such as the aileron roll, loop, immelman, chandelle and

* - split-s, which are used to practice interpretation of instruments in all
flight attitudes and promote pilot confidence. These maneuvers share some
common elements with unusual attitude recoveries, and are nearly identical
to aerobatic maneuvers which follow.

Aerobatics. Fundamentally, aerobatic maneuvers introduce the concept
of turning, maneuvering, and managing aircraft potential and kinetic energy
in the vertical plane. Except for instrument confidence maneuvers, vertical
plane maneuvering and energy management in the previous phases of flight

*has been limited to climbing and descending. There are several air show
type aerobatic maneuvers (such as the hammer-head stall, eight point roll,
inside snap roll, outside snap roll, outside turn, and square loop) that
are uncommon in military aviation. Figure 1 lists seven common military
acrobatic maneuvers.

The aileron roll requires the pilot to roll the aircraft about its own
longitudinal axis without changing heading, whereas the barrel roll is a
roll about an axis which is displaced laterally from the aircraft, and
requires pitch, roll and heading changes. The loop is a 360 degree turn
in the vertical plane (loops which start with a pitch-up are inside loops).
The immelman is a half inside loop, or 180 degree turn which uses only the .
vertical plane; the aircraft does a half roll near the top to return from
inverted to normal flight. The split-s is a 180 degree turn in the
vertical plane which is entered by rolling inverted, then completed by

* performing the last half of an inside loop.

The cuban eight is a horizontal figure eight which is similar to an
immelman which terminates in a 30-45 degree dive (instead of the top of the
loop) which is followed by another immelman terminating in a 30-45 degree
dive, and so forth. A chandelle (not listed in Figure 1) is a maximum per-
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formance climbing turn which uses both lateral and vertical planes; it is a
combination of a steep climbing turn and an immelman.

The lazy eight is a pitch, roll and speed coordination task which is
ground referenced. It requires simultaneous climbing and descending turns
so that a horizontal figure eight is described about a selected reference
point on the horizon. The maneuver starts from straight and level flight
with wings pointed at a reference point on the horizon. A 90 degree
climbing turn is started, but when 45 degrees have been turned, pitch is
decreased so that it is 0 degrees at 90 degrees of turn (the top of the

,- climb); during this time, bank angle is increased to nearly 90 degrees at .-
the top of the climbing turn. At this point, a 90 degree descending turn
is continued, but when another 45 degrees have been turned, pitch is
increased so that it is 0 degrees at 180 degrees of turn (the bottom of
descent); during this time, bank angle is decreased so that the wings are
level and point to the horizon reference at the bottom of descent. There
are specific airspeed targets at the top of climb and bottom of descent.
The second half of the maneuver is similar to the first half, but in the
opposite direction.

Figure 1 shows there are common elements between the aileron roll and
the immelman, split-s and cuban eight, which share common elements with the
loop (but the loop and aileron roll have no commonality). The barrel roll
and lazy eight share little in common with the other aerobatic maneuvers,
except for energy management and vertical plane maneuvering. The first 45 ..h
degrees of the lazy eight is similar to a chandelle entry, and elements of ...

this maneuver are similar to nose-high unusual attitude recovery on instru-
ments. Using the vertical plane to turn and manage energy are essential
components in basic fighter maneuvers, air-to-air combat and air-to-ground
weapons delivery.

Basic Fighter Maneuvers. The classic aerial dog fight involves two
aircraft, each of which is trying to maneuver into a position within
weapons effectiveness range, and hold that relative position long enough to
fire weapons with enough accuracy to destroy the opponent. Modern weapon
systems and tactics may make the classic one-versus-one dog fight a rare -

event in combat, but the fundamental skills remain important for survival.
If the pilot does not have an all-aspect missile system (and except for a
lucky head-on shot, or high angle raking gunshot), the dog fight is a game
to see who can turn the tightest (or otherwise maneuver) to position
himself behind the opponent long enough to achieve a firing solution.

Basic Fighter Maneuvers (BFM) are a prerequisite to air-to-air and air-
to-ground combat maneuvers. A sample of BFM listed in Figure 1 fall into
three categories, high angle-of-attack maneuvering, maximum performance
turns and maneuvering relative to an opponent (who is also maneuvering).

High angle-of-attack maneuvering is the foundation task; pilots must
learn to control their aircraft when turning, climbing or diving under high

g-loads at near stall conditions. Techniques will vary with the airframe,
but in general, excessive use of aileron for bank control is hazardous, and .4.
swift but smooth control of pitch is mandatory to prevent a departure. In
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some aircraft, the stick forces to generate increasing amounts of g-loads
DECREASE as g-increases; small amounts of stick pressure and movement will
change angle-of-attack significantly.

There are three classes of maximum performance turns. A hard turn is

the maximum turn rate which can be sustained without loosing airspeed at a
given altitude and gross weight at maximum thrust. A corner turn is the
maximum turn rate which can be achieved at a given gross weight and alti-
tude. Typically, there is only one airspeed which will yield a corner turn V

(at a given gross weight and altitude); attempts to turn tighter will either
produce a stall or exceed airframe g-limits. A corner turn cannot be held
for long because typically there is more drag generated than thrust avail-
able to overcome drag. A break turn is the maximum turn rate that can be
achieved at any airspeed; if the maximum instantaneous turn rate is held,
speed will decay until a corner turn is achieved.

In addition to maximum performance turns, there are five types of
maneuvers which are used to gain advantage of the opponent. A reversal is
switching almost instantaneously from a hard turn in one direction, to a
hard turn in the opposite direction, typically to escape from a position of
disadvantage (e.g. the opponent is about to shoot you down). The high and
low Yo-Yo's use the vertical plane (and gravity) to tighten the turn about
an opponent who is turning in the horizontal plane. The scissors involve
pitching and rolling maneuvers (vertical or horizontal) to get behind the
opponent without sacrificing more energy than necessary. A barrel roll can
use the vertical plane to reduce lateral separation. A barrel roll attack
uses the vertical plane to turn and position one aircraft above and behind
a second aircraft, who's track is crossing ahead of the first aircraft.

Figure 1 shows there are common elements between BFM and aerobatics
(as would be expected). Within BFM, maneuvers share many common elements,
which can be summarized as high angle-of-attack maneuvering, maximum per-
formance turning, and the use of the vertical plane to change direction and
slow down relative to an opponent while sacrificing as little airspeed as
possible. BIM introduces the need to measure performance relative to the
movement and intention of another aircraft which is not cooperative; also,
high angle of attack maneuvering and maximum performance turns introduce
measurement sampling and algorithm challenges which are not found in other
flight phases. Aerobatics and BM share common elements with the following
air-to-air and air-to-ground combat maneuvers.

Air-to-Air. A sample of air-to-air combat maneuvers is illustrated by
six types of maneuvers listed in Figure 1; these are intercept, visual
identification, one-versus-one, guns, missiles and tactics. The intercept
and visual identification maneuvers share common tasks with formation and
refueling maneuvers; but, they may be performed using onboard electronic or
external systems, and the target is not cooperative. Moreover, detection -.

by the opponent must be avoided, which makes the task more complex than
formation or refueling maneuvers; tactical considerations, such as the
capability and intent of the adversary and the rules of engagement, enter
the task.
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One-versus-one combat is the application of BFM. Fuel consumption,
energy management and energy maneuverability share equal importance with
BFM maneuvering tasks. Often, fuel is limited, so any potential engagement

will be constrained by fuel. Kinetic energy (speed) and potential energy
(altitude and fuel) must be traded-off for advantage when maneuvering to
obtain positional advantage. Energy maneuverability is the task of

maintaining the engagement within the envelope of speed, turn rate and r.
energy gain or loss which is more advantageous for the aircraft you are

flying than the same factors for the opponent aircraft; this is critical
when engaging an aircraft of dissimilar performance capability. (For
example, if you are in an F-4 engaging a MIG-21, you do not want to slow
down to the MIG's corner turn speed unless a kill is assured, because the
MIG will be able to turn tighter at that speed than you can.) These tasks

add considerable perceptual and cognitive workload to BFM tasks. .6.-

A complementary, but separate set of skills are required for gun and
missile delivery tasks. There are weapon system management tasks of
selecting, configuring, arming and firing the desired weapons; these tasks
have to be executed quickly and at the proper time during maneuvering, when

everything else is going on. The aircraft must be controlled to achieve a
firing solution for gun and missile delivery tasks without losing a position
of advantage. For guns, the target has to be tracked in the gunsight for a

period of time as well. These tasks share common elements with formation,
refueling, aerobatics and BFM tasks, but add gunsight and radar scope
tracking tasks.

Typically, military air-to-air combat is not planned to be one-versus-
one dog fights. Tactics for two-versus-one, two-versus-two and so forth
are taught and practiced. Although the execution of such tactics would
include all the previously described tasks, there are added tasks of k.-
mission planning, contingency planning, inflight coordination, command,
control and communications. Pilots must use their aircraft as an element
of a coordinated strike team.

Air-to-Ground. Eight maneuvers shown in Figure 1 provide a sample of
air-to-ground weapons delivery maneuvers. The first three maneuvers are
typical patterns. The next three are common tasks in manual dive bombing,
strafing and rocket delivery. The last two maneuvers represent level bomb
and tactical deliveries.

Three different kinds of delivery patterns are used in training to
position the aircraft at the proper point in the sky to roll-in to a dive
(and to control aircraft separation during training). The box pattern is
similar to a landing pattern, except that the downwind leg altitude is a
function of the dive angle, and can vary from 10,500 feet to about 5,000
feet. A high or low angle dive is started on the turn from base to final
leg.

The cone pattern is flown by intercepting and flying just outside of an
imaginary inverted cone which has an apex above the target and sides which
represent the dive angle path to the target. The cone is intercepted on
the downwind leg abeam the target, and flown for about 90 degrees at
pattern altitude before rolling-in to the final dive.
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The pop-up pattern is a tactical maneuver used to minimize exposure of
the aircraft to target air defense systems. Typically, the maneuver will
be entered from high speed, low level flight at a distance from the target
which is just enough to complete the maneuver. A nominal climb (about 30
degrees of pitch-up) is established. Just before the apex altitude (which
depends on the final dive angle), the aircraft is rolled inverted and
pitched into the final dive, making any required changes in course to line-
up with the target. As the desired dive angle is achieved, the aircraft is
rolled upright to complete the delivery.

The above patterns are used to fly the aircraft to the proper point in
%: the sky from which a delivery of known dive angle can be made. All three

patterns share common maneuvers of roll-in, target tracking and recovery.
The roll-in from a box or cone pattern typically requires a bank angle of
90 degrees plus the dive angle (e.g. a 30 degree dive requires a 120 degree
bank). The "roll-in" equivalent in the pop-up pattern is apex. As the
proper dive angle and sight picture is achieved, the aircraft is rolled
upright, the weapon system is armed, and target tracking begins.

Since the aircraft has a lift vector, the dive angle path will be less
than the dive angle attitude; the sight "pipper" is usually placed between
the aircraft and the target, and is permitted to drift to the target as the

-~ dive continues. The tracking maneuver is to control aircraft attitude so
that required airspeed, dive angle and pipper placement are achieved simul-
taneously with the release altitude. Adjustments to pipper placement and
release altitude have to be made for off parameter solutions. All these4
tasks have to be accomplished in three to eight seconds, depending on dive
angle and entry altitude. For strafing, the target has to be tracked when
firing the guns or cannon.

After release or cease firing of guns, a four-g recovery maneuver is
executed so as not to stall or strike the ground. Weapons systems are
switched to safe. A pull-up and climbing turn is executed to position the Aaircraft with proper spacing behind the prior aircraft when using the box
or cone patterns. In a tactical delivery, the aircraft probably would
return immediately to low level flight to escape the target area.

The final two classes of maneuvers shown in Figure 1 are level bomb and k
tactical deliveries. Level bomb shares common navigation to target and
system configuration tasks with the above maneuvers, but no dive is made;
the aircraft flies at constant altitude (high or low) to the target, and
releases its bombs when the proper sight picture is achieved.

There are several types of tactical deliveries which depend on the
weapon systems available on specific aircraft. Radar Nay-Bomb involves the
use of radar returns for navigation to the target and for determining
weapons release aim points; these deliveries are similar to level bomb.
Modern weapons systems with head-up displays can compute and display bomb
fall lines and projected impact points; a predetermined dive angle does not
have to be achieved, but the range of delivery angles may be constrained by
bomb fragmentation patterns, target terrain or tactical considerations; theL
moat typical maneuver would be the pop-up or a variation of it.
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Modern weapon systems permit delivery maneuvers which "toss" the bomb I
at the target as well. These maneuvers require designation of the target
to the weapon system, then following commands which are usually presented
on a head-up display. Typically, these maneuvers start with a pitch-up,
then command release at a certain point in the pitch-up maneuver. If the
bomb is to be tossed to a target which is ahead of the aircraft, the
release will occur during the early part of the pitch-up. If an "over the
shoulder" delivery is used against a target which is below the aircraft,
the release will occur late in the pitch-up maneuver, in a near vertical
climb. Depending on the pitch attitude at release, the pitch-up is
converted to a steep descending turn or continued to an immelman to escape
the target area.

*1'.

Figure 1 shows that air-to-ground weapons delivery maneuvers share
common tasks with landing patterns, formation flight, low altitude contact
navigation, instrument flight, aerobatics, basic fighter maneuvers, and AN
air-to-air combat. There are many common tasks among the air-to-ground
weapons delivery maneuvers as well.

Air Drop. The typical airdrop mission is flown in formation and under
radio silence. After take-off, the formation will assemble and may fly to
a location using airways, but eventually will descend and fly low level
contact navigation in extended trail formation to an Initial Point (IP).
At the IP, there is a slow-down maneuver which allows the elements of a
typical three ship formation to close on either side of the lead for the
delivery formation.

I'.

Between the IP and the Computed Air Release Point (CARP), pilots must
maixtain their formation position while the lead navigator recomputes the
CARP based on current winds, and loadmasters prepare for delivery. The
drop starts at the CARP, which may be determined with the aid of onboard
avionics, but is usually a computed number of seconds from passing abeam a
visual landmark near the drop zone. Formation aircraft drop when the lead
drops, and pilots must adjust for changing weight and balance of the
aircraft when holding formation position. After delivery the loadmasters
close exits, the formation executes a planned acceleration maneuver, and
returns (typically) to a low level flight in trail formation for a return
to base or other designated airport.

Airdrop shares common tasks with formation, navigation, instruments,
and air-to-ground maneuvers.

Summary. The number of common flight maneuvers among flight phases is
summarized in Figure 2. The number of x's in each off-diagonal cell of
flight phases in Figure 1 were divided by the total number of cells formed
by each phase pair to derive the percentage of cells filled shown in Figure
2. Percentages less than 10 were judged to be beyond the accuracy of this S
analysis, and were not shown.
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Flight Phase

Flight Phase BAS L-P LND FOR REF NAV INS ARO BFM A-A

BAS Basic Flight
L-P Landing Patt. .46*
LND Landing .56
FOR Formation .49 .43
REF Refueling .44 .27
NAV Navigation .42
INS Instruments .47 .43
ARO Aerobatics .40
BFM Basic Fighter .53 .11 .11 .21 -
A-A Air-to-Air .52 .30 .39 .43 .54
A-G Air-to-Ground .47 .25 .16 .18 .25
A-D Air Drop .52 .27 .58 .20

* Number of common maneuvers divided by total per phase pair.

Figure 2. Commonality of flight maneuvers by flight phase.

Accepting the subjective foundation of this analysis, Figure 2 shows
commonality between the maneuvers in each pair of flight phases. Basic
flight maneuvers share common maneuvers with all phases, as expected. The
relationship between landing patterns and formation flight is because of &A
the task of maneuvering aircraft about other aircraft in traffic patterns;
it may be overestimated. Landing shares no commonality with other flight 6.- 6

maneuvers.

Formation flight has common elements with refueling, basic fighter *

maneuvers, air-to-air, air-to-ground, and air drop. Refueling has common
elements with basic fighter maneuvers and air-to-air. Navigation shares
common elements with instruments, air-to-ground and air drop. Instruments
and air drop are related only because of possible airways navigation during
the air drop mission. Aerobatics share common elements with basic fighter
maneuvers, air-to-air and air-to-ground. Basic fighter maneuvers share
common tasks with air-to-air. And, air-to-air shares some common tasks
with air-to-ground.

One must be cautious with a quantitative analysis of the data in Figure
2; the relationships are between flight phase pairs, one pair at a time,
and there are no corrections for multiple relationships. A qualitative
analysis is possible; it suggests that measurement of basic flight tasks
would account for about half of the measurement for any of these flight
phases. Re-examining Figure 1, it would be useful to develop general
guidelines for measuring turns, climbs and descents, accelerations and
decelerations, stall approach and recovery, air and ground referenced
maneuvers.
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Measures for formation intercept and stationkeeping (close and loose)
appear to have utility for basic fighter maneuvers, air-to-air, air-to- IN.
ground and air drop. Measures of navigation performance appear to have
utility for instruments, air-to-ground and air drop. Aerobatics measures
should be useful for basic fighter maneuvers, air-to-air and air-to-ground.
Basic fighter maneuver measures should aid air-to-air measurement. And,
air-to-air measurement should aid air-to-ground measurement development.

This analysis has not examined flight planning, subsystem operations
(such as fuel, hydraulic, electrical, and avionics subsystems), emergency _
procedures, electronic warfare and command, control and communications
tasks. Development of performance measures for these tasks are (a) system
and situation specific, (b) may be beyond the scope of what is reasonable
to measure with automated systems or (c) are beyond the scope of what could
be accomplished in this study. With the commonality analysis results in
mind, a structure for common measurement is discussed next.
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' ,-SECTION 3.

MEASUREMENT STRUCTURE

It is useful to think about measurement as deriving information for
some purpose. The general purpose of measuring aircrew performance is to
quantify performance for system design, personnel selection, training,
operational readiness evaluation and research for these purposes. What the
measurement user wants to know will dictate what measures are appropriate.
Often, however, measurement users do not know what they want to know with
much precision; this is especially true in research, which by definition is
a quest for previously unknown knowledge. To improve the precision of
measurement specification, it is helpful to define a structure, or language
for describing measures.

It is assumed that a measurement user needs performance metrics which
are amenable to quantitative analysis. Plots of variables over time (a
time history), although useful for measurement development and performance
diagnosis, do not yield metrics which are suitable for quantitative
analysis. The process of generating performance metrics can be decomposed
into the following functional elements:

* Measure Segment.
. State Variable(s).
. Sampling Rate.
" Desired Value (if any).
o Error Datum.
. Transformation.

Unambiguous definition of these elements permits data on the states of
the system or human controller to be converted into a unit of information
about performance. Each element is introduced in the remainder of this
section, and described at length in remaining seations of this report.

MEASURE SEGMENIT

A measure segment is any period of time during which the aircrew/system
performance is lawful, and for which the beginning and end can be defined
unambiguously. Measure segments generally correspond to tasks. They can
overlap, and several segments can be in operation at a given time. They
can represent a whole maneuver, or component parts of a maneuver, depending
on what the measurement user wants to know.

.. For example, a takeoff can be divided into many segments such as brake
release to rotation speed, rotation speed to lift-off, and lift-off to gear
retraction for measuring acceleration and pitch control performance. At
the same time, a segment for the whole maneuver can start at brake release .:.
and end at gear retraction for measuring lateral displacement from the
centerline throughout the whole maneuver.
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As will be discussed in Section 5, precise and unambiguous logic for
determining when to measure is a key issue of real-time measurement system
design.

STATE VARIABLE(S)

A state variable is any measurable state of the human or system, such
as control inputs, aircraft attitudes, rates, heading, speed, altitude and
physiological states of the human operator. In many documents, including
simulator specifications, state variables often are called parameters, but
this use of the term is incorrect. A parameter is: "A quantity to which
the operator may assign arbitrary values, as distinguished from a variable,
which can assume only those values that the form of the function makes
possible" (Webster, 1956). What has been called parameters are variables,
which can be continuous or discrete. Common state variables are listed in
Section 4.

SAMPLING RATE

State variables are sampled for measurement purposes. Typically, the
sampling rate is expressed as the number of samples per unit of time, such
as ten samples per second. The sampling rate depends on how fast the
variable changes value per unit of time and the accuracy required for the
transformation (see definition below) to be used. Common sampling rates '

are discussed in Section 4.

DESIRED VALUE AND ERROR DATUM
4

Of ten, the information required by the measurement system user is the
magnitude of the error between a present value of a variable and its ideal
or desired value at that time. For example, if a pilot is supposed to fly
at 250 knots and the current airspeed is 262 knots, the error from the
desired speed is 12 knots, which is the error datum. A desired value may -2.

be a constant or a function of other variables.

TRANSFORMATION

A transformation is any logical or mathematical treatment of the error
datum. A measurement user may want to know only the error of a particular
continuous variable at a given time, such as the error from a desired speed
when crossing the runway threshold. Here, the transformation would be the
actual (or absolute) value of the error datum. Continuous variables often
are sampled for a period of time to describe performance with one metric;

* here, a transformation such as the absolute average error over the measure
segment might be used. Transformations may be performed on one variable
(or error data), or may be formed by functions of several variables or
error data. Transformations may be in the time or frequency domains, asS

* - discussed further in Section 6.
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INTERACTIONS BETWEEN MEASUREMENT STRUCTURE ELEMENTS

The functional elements of the measurement structure are dependent on
one another; there are interactions between segmentation rules, desired
values and transforms. If measure segmentation is activated on one set of
system state variables, then typically, resultant measures will be made on
other variables. P

For example, during instrument climbing and descending turns, there are
specific altitude changes to be achieved at certain headings which should LP
occur at specific times during the maneuver. The maneuver may be segmented
by time, altitude or heading. If segments are activated by heading, then
altitude and time errors when achieving specific headings become measures.
If segments are activated when achieving certain altitudes, then heading
and time errors become measures. ,-

Also, it is obvious that maneuver segmentation rules and sampling
rates place boundaries on desired values and transformations that can be
used. For example, if a maneuver segment is simply one sample to be taken
when an event occurs (e.g. pitch attitude, airspeed and altitude at gear
retraction after takeoff), transformations are limited to the value or
absolute value of the error data, or functions of these three measures. If
the frequency content of pilot control input is desired, the sample rate
will have to be high enough for accurate measurement of the frequency
spectrum.

These interactions illustrate that the meaning or information content
of measures depends on an unambiguous specification of all elements of this
measurement structure. Most crew/system performance measurement can be
defined using this structure, as discussed further in remaining sections of

this report.
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SECTION 4.

TYPICAL SYSTEM STATES AND SAMPLING RATES

As discussed in Section 3, system state variables are measurable states
of the human or system, such as control inputs, aircraft attitudes and
rates, heading, speed, altitude, position and acceleration about other
aircraft, subsystem controls and displays, communications and physiological
states of the human operator. Physiological states of the human operator
can include temperature, heart rate, respiration rate, oxygen intake, eye

* movements and so forth, but these are beyond the intent of this report, and
will not be discussed.

The selection of system states will depend entirely on the purpose of
measuring. If one is measuring instrument flight performance, a relatively
small number of states, perhaps 20-30, will be needed. If one is measuring
performance for combat effectiveness and pilot workload assessment during
system design studies, several hundred states of the pilot, all subsystems,
adversary systems and weapons effectiveness will be needed.

As a guide, typical system states that one might examine for a basic
and advanced single engine jet training simulator are shown in Table 2,
along with the accuracy required for human performance measurement. A
nominal set of subsystems (such as a standard UHF and VHF communications
and navigation, a manual gunsight, two hydraulic systems, and master
caution alerting systems) are assumed. The table also shows typical

* aircraft states relative to other aircraft, ground or air targets for
formation, manual air-to-air and manual air-to-ground weapons delivery
tasks. A multi-engine jet fighter, large bomber or transport aircraft
would have many more systems than are shown for fuel, engine, hydraulic,

* electrical, navigation and weapons system control.

Table 2 shows typical sampling rates for human performance studies.
The required sampling rate depends on how fast the variables change value
per unit of time and the accuracy required for the transformation to be
used. For example, variables such as course deviation may not change
rapidly; when using statistical transformations, one sample per second may
be more accurate than is necessary. Statistical transformations such as
average or absolute average deviations, root-mean-squared error and the
standard deviation are robust; if the measurement segment is one minute or
more in length and there is not much maneuvering (as in instrument flight),
these transformations will represent performance accurately with sampling
rates as low as one sample every 10 seconds.

On the other hand, in tasks such as air-to-air and air-to-ground weapon
* delivery, variables change rapidly, and the highest possible sampling rate
* is required. Also, when sampling pilot control inputs for frequency domain
* transformations, 20 samples per second may be required. One rule of thumb
* is to sample at a rate which is at least three times the highest expected

frequency of the variable, although five times the highest frequency is
safer. Transformations are discussed at length in Section 6.
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TABLE 2. TYPICAL SYSTEM STATES AND SAMPLING RATES

Sample

System States Accuracy Rate Type

Pitch Stick Position or Force 1% of range 20/sec C*

Roll Stick Position or Force 1% of range 20/sec C
Rudder Pedal Position or Force 1% of range 20/sec C
Throttle Position 1% of range 2/sec D
Collective Position (helicopter) 1% of range 2/sec C
Speedbrake Switch Position actual 2/sec D -."
Flap Selector Position actual 2/sec D
Hook Position (carrier aircraft) actual 2/sec D *"
Pitch Trim (Position) 0.1 deg 2/sec D

:1 Aileron Trim (Position) 1.0 deg 2/see D
Rudder Trim (Position) 1.0 deg 2/sec D
Altimeter Setting 0.01 in 2/sec D
Pitch Attitude 1.0 deg 2/sec C
Pitch Attitude Rate 0.1 deg/sec 2/sec C
Roll Attitude 1.0 deg 2/sec C
Roll Attitude Rate 0.1 deg/sec 2/sec C
Heading (magnetic) 1.0 deg 2/sec C
Angle of Attack 0.5 units 2/sec C
Airspeed 2.0 knots 2/sec C
Mach 0.01 mach 2/sec C
Turn Rate (needle position) 0.25 needle 2/sec C
g's (indicated) 0.5 g 2/sec C

Side Slip (ball position) 0.1 ball 2/sec C
Altitude (barometric indicated) . 10.0 feet 2/sec C

N. Vertical Speed (climb/dive indicated) 50.0 ft/min 2/sec C
RPM (indicated) 1% 2/sec C
TIT or EGT (indicated) 10.0 deg 2/sec C
Engine Start Switch actual 2/sec D
Ignition button actual 2/sec D
Start/relight button actual 2/sec D

* Fuel Selectors actual 2/sec D
Central Warning Panel Lights actual 2/see D
Fire Extinguisher Pushbutton and Light actual 2/sec D
Hydraulic Pressure (each system) 1.0 bar 2/sec D
Parking brake lever actual 2/sec D
Anti-Skid switch actual 2/sec D
Brake Parachute Test switch actual 2/sec D
Brake Parachute Control actual 2/sec D
Brake Hydraulic Pressure (each system) 1.0 bar 2/sec D
Landing Gear Controls (up, down, emgcy) actual 2/sec D
UHF Communications (Freq/Mode/X-mit) actual 2/sec D
Transponder Mode/Code/Ident actual 2/sec D

TACAN T/R switch, Frequency actual 2/sec D

* C - Continuous, D = Discrete
26"
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-1 TABLE 2. TYPICAL SYSTEM STATES AND SAMPLE RATES (Continued)

Sample
System States Accuracy Rate Type.

TACAN Radial 1.0 deg 2/sec C

HSI Course Deviation (indicated) 1.0 deg 2/sec C "+ >

TACAN DME 0.1 nm 2/sec C

DME Lock (DME Validitiy) actual 2/sec D

DME Rate 0.1 nm/hour 2/sec C

VOR Frequency, Omni Bearing Selector actual 2/sec D

ADF Frequency actual 2/sec D

ADF Bearing 1.0 deg 2/sec C

ILS Localizer Deviation 0.01 deg 2/sec C

ILS (or FLOLS or ACLS) Glideslope 0.01 deg 2/sec C

Aircraft Latitude (or feet from Ref) 5.0 sec 2/sec C
Aircraft Longitude (or feet from Ref) 5.0 sec 2/sec C

- Magnetic Track across ground 1.0 deg 2/sec C

Weight off nose gear actual 2/sec D
Weight off main gear (both) actual 2/sec D
Fuel Remaining 10.0 pounds 2/sec C
Gross Weight 100.0 pounds 2/sec C
Stores Loaded (jettesoned) actual 2/sec D
Anti-Ice actual 2/sec D

Pitot Heat actual 2/sec D
Additional Key Cockpit Switches actual 2/sec D
Add For Formation:
Delta X from A/C 1** 1.0 foot 10/sec C

Delta Y from A/C 1 1.0 foot 10/sec C .+
Delta Z from A/C 1 1.0 foot 10/sec C
Delta X, Y, Z from A/C 2 1.0 foot 10/sec C
Delta X, Y, Z from A/C 3 1.0 foot 10/sec C

Add For Air-to-Ground:
Target to Pipper (in gunsite plane) 1.0 mil 20sec C
Gunsight Mil Setting and Controls actual 1/sec D ( ..

Trigger Pull actual 20/sec D.-
Weapon Control Panel (select/arm/displays) actual I/sec D
Bomb Impact Circular Error 1.0 foot I/sec D
Bomb Impact Direction 5.0 degrees 1/sec D

Gun Rounds Fired actual 1/sec D

Number of Hits actual 1/sec D '.

Add For Air-to-Air:
In range 100.0 feet 10/sec D

In envelope 5.0 deg 10/sec D

Missles fired actual 10/sec D S
Missle kill actual 10/sec D

Line of Sight Angle (cone) 5.0 deg 10/sec C

Target Aspect Angle 5.0 deg 10/sec C

Delta X, Y, and Z Target Aircraft 1.0 foot 10/sec C

Delta X, Y, and Z Rate of Target A/C 20.0 ft/sec 10/sec C

** Delta is the difference in X, Y, and Z between aircraft.
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Typically, it is convenient, but not necessary to measure all states of
the aircraft. For example, attitude rates can be derived from attitude
changes over time if necessary, but it is better to measure a rate or .\

acceleration directly than to derive it by digital methods. Similarly,
turn rate can be derived from the change in heading over time; however, as
the turn approaches the vertical plane in maneuvering flight, body axis or
inertial axis turn rate is needed. A case-by-case analysis of information
desired, sensors and states available for measuring is required.

Sampling of discrete variables such as trigger for weapons release,

switch positions, frequencies, and data entry into weapons and flight
management systems requires special treatment. Some svitches can change to
a critical state and return to the previous state (or another state)
rapidly. It is possible to miss a state unless the switch is sampled at
the highest possible rate of change that can occur.

This is obvious during weapons delivery tasks, but not so obvious when
measuring normal procedures of subsystem control. If one examines the

number of switches in a typical jet aircraft, and the number of possible
positions of those switches, an enormous number of measures can be taken;
this tends to clog the data storage medium (memory, magnetic disk or tape)
with thousands of samples of measures, only a few of which may be useful.

There are three solutions to this problem. First, localized routines
which sample at the highest possible rate can be used to remember any
switch position changes that occur between the normal measurement sampling
rate for data treatment or storage. For example, switches may be examined
for position 30 times a second, and all changes reported to the measurement
system for further treatment once a second.

Second, sampling of switches can be done whenever any switch changes
position, rather than at a fixed time interval (also, sampling of slow
moving system states can be done on this basis as well). If sampling is
done when states change, a time stamp has to accompany the record so that
the "time history" can be reconstructed for measurement purposes.

Third, variable sampling rates can be used. Here, sampling rates of
various states can be altered as the situation dictates. Records of the
sampling rates in effect have to be maintained, and algorithms to treat
each sampling rate appropriately have to be developed.

The best solution to this problem will be situation dependent. In
general, however, measurement system design and software is simplified if a -
consistent sampling method is used for all variables. The first solution,
localized routines to remember changes in state between general sampling
intervals, is preferred. The second solution is preferred if there are

* long periods of time, few changes in the relevant states, and
__ transformations do not involve statistical or frequency domain treatment.

The third method is preferred when the first method cannot be implemented
and there are storage limitations.
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This concludes our discussion of system states and sampling rates. Some
example measures for a typical tracking task are contained in Section 6,
Transformation Guidelines, after treatment of measure segmentation, which
is next.
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-I SECTION 5.

MEASURE SEGMENTATION GUIDELINES

As discussed in Section 3, a measure segment is any period of time
during which the aircrew-system performance is lawful, and for which the

* beginning and end can be defined unambiguously. Measure segments generally
correspond to tasks. They can overlap, and several segments can be in '

operation at any given time. They can represent a whole maneuver, or com-
ponent parts of a maneuver, depending on what the measurement user wants to
know. Measure segmentation rules generally apply where there are known
profiles or prescribed procedures; however, the concepts can be applied to
aid measurement in emergent situations, such as air combat maneuvering,
where there may not be any one profile.

Measure segmentation rules influence the precision of measures taken
within a segment. Most of flight can be described as transitions to and
f rom steady states. For example, if the task is to turn to a heading, the
pilot will bank to capture and track a steady-state roll angle, then roll-
out on the heading. If error from the desired steady-state roll angle is
measured throughout the turn, more error variance can accrue during the
capture of that steady-state than during the tracking of it; this would
contaminate tracking measures with capture performance, and decrease the
precision of measurement. Also, when the pilot deliberately departs from

* the steady state (such as rolling out of the turn), that event must be
detected to prevent the tracking measures from being contaminated by the
departure from the steady-state, which is a transition to the new steady-

* state.

Measure segmentation rules, therefore, are important because they affect
the precision of measures taken within a segment. They also interact with
and def ine the meaning of measures, as discussed earlier. This section
will address general issues, general principles, maneuvers and tasks of

interest, required logic decisions, example logic and combining logics.

GENERAL ISSUES

* ~Flight Segments or Tasks. The first general issue is: is measurement .*.

to be derived for flight segments or pilot tasks within and between flight
segments? For example, an instrument flight task might be to fly an airway
from intersection A to VOR B, and then to VOR C, where a 45 degree change
in course is required from A-B to B-C. Flight segments would be A-B and B-
C. The pilot task, however, is to track the course A-B, and at some point
just prior to crossing B (for jets), initiate a turn to depart A-B so as to

* roll-out on B-C on course. The flight tasks are track A-B, transition to
B-C, then track B-C. There are three pilot tasks, but only two flight
segments.

In slower, non-jet aircraft and helicopters, it is good practice to
cross a fix before turning to intercept the outbound leg. In this case,
the transition occurs af ter the fix crossing, but there still are three
pilot tasks and two flight segments.
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Recommendation: Measure operator tasks, not flight segments, unless
they coincide.

Amount of Segmentation. The second general issue is: how much task
segmentation is necessary to describe a given performance? In the turn
example given above, it was assumed that the measurement user would want to
separate the capture and departure of roll angle from the steady-state
tracking of roll. This kind of information might be desired for some
applications, but not for others. Enough information about performance
might be derived from simply timing the turn, from beginning to end, to
determine if the average turn rate was within the expected range; in this
case, the beginning and end of the turn would have to be detected with"V
precision, but the segmentation of capturing and departing the steady-state
turn might not be needed.

Recommendation: An analysis of user information needs is critical. Do
not subdivide a pilot task or maneuver any more than necessary to obtain 5~

desired performance information (and nothing more) with precision. When a
measurement system with good segmentation capacity is developed, there may .--

be strong urges to decompose all tasks and maneuvers to the same level of
detail. Do not decompose tasks unless the information is necessary.

Detect Transitions. The third general issue is to develop measure
segmentation logic which can detect transitions. Transitions to and from
steady-states represent much of flight, yet most measurement examines only
the steady-state. Anecdotal evidence suggests that instructors learn much
about the skill of students by how they control transitions, and certainly
smooth and efficient control of transitions represents deeper knowledge and
skill than maintaining a steady-state, which is simply regulator behavior; *.-

much performance information can be lost if transitions are not measured. (-

Although it is easy to detect the transitions to and from steady-state
tracking when examining a time history (e.g. a plot of a state variable
over time), measurement system intelligence and memory is required to
detect transitions in real time. For example, in real time it is hard to
know if a pilot is (a) deliberately entering a turn, (b) simply correcting
a course or heading error, or (c) not flying with precision. After a turn
has taken place, one can determine from the time history plot where it
began. During maneuvering flight, the pilot may transition from one state
to another continuously, never settling on one state long enough for it to
be considered as a steady-state.

Recommendation: It generally is worthwhile in the long run to design a
* measurement system with short-term memory of the time history, and enough

intelligence to be able to start a segment at some earlier time, based on
what has happened over a short period of time. Sufficient intelligence can

* result from the use of short-term memory, functions composed of several
variables, flags to denote when events occur and common boolean operators.
These elements are discussed in a later subsection.

- -Precision and Robustness. The fourth and final general issue is the
* precision and robustness of measure segmentation algorithms. The purpose
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of segmenting is to gain meaning and precision from the resulting measures.
The logic must capture the performance it was intended to capture with
precision, and nothing else. Also, the logic must perform decisions in
exactly the same way, no matter how the maneuver or measure segment is
entered. There are many ways, for example, that pilots might capture a
course, altitude, heading, speed or position relative to another aircraft
or object on the ground. Measure segmentation logic must always work in
the same way at all times in spite of the foibles and variability of human
operators.

Recommendation: Never assume logic is fool-proof. Install protective
* logic in the measurement system in case segments fail to start or stop.
* Pretest all logic with a range of "worst case" situations with a sample of

actual data, or a simulation of those data.

GENERAL PRINCIPLES

Since it is easy to know when transitions start by looking backward on
* a time history, and difficult to make such decisions when only the current

states of the system are known, real time measurement systems must have
short-term memory. The segmentation logic must be able to start a segment
or capture an event at some time in the past, as a function of what has
happened over a short time interval and what is happening now. The general
principles for designing segmentation logic are embodied in the concepts of
(a) windowing, (b) Boolean logical operations, (c) f lags to denote certain .

events (d) derivatives of variables, and (e) protective logic.- Each concept
* is described below:

Windowing. A running "window" of all variables and data of interest
is recommended. The purpose of the window is to maintain a short time%
history for segmentation decisions and measurement; a window of 15-30
seconds of time history should be adequate for most measurement purposes.
Windowing was first suggested as a solution to logic problems by Hiennessy,
Hockenberger, Barneby and Vreuls (1979). The window should contain the
following functional elements:

9 All variables to be measured during this segment and the next one,
and any transformations of them (such as tolerance bands or running
averages) which are computed "on the fly."

*All computed functions (of perhaps several variables).

*All variables on which segmentation logic will be based for this
segment and the next one.

9 All binary flags to indicate when specific events occur.

The window does not need to carry all variables and flags of interest
for all possible segments; but if the window is restricted to data which
are of current interest to the measurement system, it is mandatory to
include all variables and flags which apply to the next segment as well.
Because of backward looking logic, a decision to open the next segment can
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be made retroactively, and the window must already contain the variables,

Thewinowcan be envisioned as a two-dimensional array in computer
memoy, wererequired variables, functions and flags represent one element
of he rry, ndsuccessive samples of those variables represent the second
dimnsin. n acurrent application, 32 words of data sampled two times a

second are preserved in the window, yielding a 16 second time history.
When the window is filled, the oldest sample is lost to make room for the
most recent sample. The number of variables, functions, transformations
and flags to be carried in the window depend on user information needs,
memory space available, and the time required to process the window. These
factors have to be determined for each application; but in general, 20
variables per aircraft appear to be sufficient for most flight tasks.
Measurement of cockpit and subsystem switches would add to this. -

Flags. For segmentation logic purposes, it is helpful to set flagsA
when certain events occur, then test flags as well as variables to make
decisions. For example, a flag can be set as the result of logic to detect
when certain conditions occur. Later, these conditions may no longer
exist, but it may be necessary to know that they once existed, and at what
time they existed. Setting a flag, and testing that flag at a later time
provides this intelligence, which is needed for maneuvering flight, and to
simplify sequential logic where one would look for a certain set of events --

only after another event occurred.

Boolean Operators. Common AND, OR and NOT operators are sufficient for
most segmentation logic decisions. A typical construction for segmentation
decisions would be as follows: IF the error from the desired value of
variable X is greater than V AND the error from desired value of variable
Y i s less than V , AND f lag N i s true, THEN s tart segment Z. The need f or *

mare complex constructions is reduced greatly by the use of flags.

Derivatives. The derivative of the error from the desired value of a
variable contains information which is useful for segmentation logic when
it is used in conjunction with the error from the variable. For example;
instantaneous vertical velocity is the derivative of altitude error.
Position error (altitude error from desired) can be compared to vertical
velocity (rate of change of position error) at any (or every) moment in
time to determine if the pilot is (a) displaced from proper position but
converging on it (e.g. correcting), (b)_displaced from proper position and
diverging away from it, (c) displaced from proper position and holding a
steady offset, (d) at proper position but diverging from it, or (e)
remaining stable on position.

During typical steady-state tracking, a pilot will vary about a desired
*value of a system state, constantly nulling error in much the same way as a

regulator or thermostat. There will be a small amount of error and error
rate that represents acceptable boundaries of control performance and

* -stability; this has been called the "limit cycle" by some control system
engineers. If the pilot is slightly off altitude but correcting smoothly,. *.-

or on altitude but diverging from it slowly, the performance probably would ,

* be Judged to be stable and within the normal limit cycle of the system.
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When the system departs from the normal limit cycle, the sign of the
position error and rate offers a quick test of convergence or divergence:
If position error and rate are opposite in sign, the pilot is converging on
the desired position. If the position error and rate are of the same sign,
the pilot is diverging from the proper position. When performance is
outside the limit cycle, therefore, a simple test of the sign of error can
determine whether the pilot is correcting or departing a given state.

This concept is useful, for example, to distinguish the start of a
maneuver from normal corrections of the previous steady-state; however, it
is not a sufficient test because the pilot may be momentarily unstable. If
a flag is set whenever the position error and derivative indicate diver-
gence, and the presence of that flag over several seconds of time is
tested, the decision that a change of state is in progress can be enhanced.
The use of a window of the last several seconds of time history permits the As
segmentation logic to detect divergence from a previous steady-state for a
long enough period of time to decide that the change is not a normal
correction (or momentary instability), then designate the start of a new
segment at an earlier time. The segment start time can be based on a nomi-
nal (constant) time, a running average of the rate of change per unit of
time, or when the flag of error and error rate first indicated continuous
divergence.

Parenthetically, a plot of position error versus error rate is known as
a "phase plane" in traditional servomechanism control engineering (circa
1940's). Regions of the phase plane provide control performance and
stability information, and can be used for segmentation logic decisions as
described above, or as a transformation.

Protective Logic. It is hazardous to assume that all segments will
start and stop, because all conditions for so doing might not be met. If a
segment does not start, there is little that can be done other than to
analyze the failure and build more comprehensive start logic. Once opened,
all segments should have parallel logic to close them in case the flight
terminates for some reason. Also, it is good practice to estimate the
maximum possible time of every segment, and close them on timeout. A stop
for any reason other than a normal logic decision should be noted in the
measurement system output, and measures invalidated.

MANEUVERS AND TASKS OF INTEREST

As said before, much of flight is transitions to and from steady-state
turns, climbs and descents, and accelerations and decelerations to capture
turn rates or headings, climb rates or altitudes, airspeeds, courses across
the ground, or a position relative to an object on the ground or in the
air. As discussed in Section 2, performance of these tasks accounts for
nearly one-half of all of flight tasks. General rules for segmenting
turns, climbs and descents, accelerations and decelerations, therefore,
would represent the most useful set of guidelines. The generality of
measure segmentation rules for the following tasks are listed below in
descending order of value to all phases of flight:
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e Turns.
* Acceleration and Deceleration.
* Climb and Descent.
* Capture of Course, Heading, Speed, Altitude or Altitude Rate.
e Stationkeeping.
* Maneuvering relative to another aircraft or an object on the ground. .*

REQUIRED LOGIC DECISIONS

Segmentation logic has to determine if the aircraft is capturing,
tracking or departing:

o Turn rate or bank angle;
o Climb or descent rate;

* Altitude, heading, course or arc;
* Navigational fix or holding pattern;
o Formation station;

o Aerobatic maneuver segments;
o Basic fighter maneuver segments;
o Air combat maneuver segments or positions of advantage or

disadvantage;
o Ground attack maneuver segments; or
o Hover, or translation to and form forward aerodynamic flight.

For the above cases, exact algorithms are required, and there are some

arbitrary decisions that have to be made, such as when does:

" Capture stop and tracking start?
" Tracking end and transition begin?
" Approach end and go-around begin?
" Approach end and landing begin?
" Landing end and rollout begin (Weight on wheels? How much weight?

One or both wheels? Which bounce?)?
" Rollout end?
" Takeoff begin?

EXAMPLE LOGIC

The development of proper and robust segmentation logic is an inexact
science. Philosophy and methods can be illustrated, but application of
these methods to every problem without thorough analysis, modification to
suit the situation, and empirical test is not recommended. For purposes of
illustration only, a high performance, fixed wing jet aircraft is assumed
in Table 3, unless otherwise noted.

36
"" , ,-,.,.



TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC

Segment Start/Stop Logic Comment

1. Turn For half standard rate,
standard rate and con-
stant bank angle turns.

Capture: When Roll vs. error from Nominal, starting limit cycle
initial heading is outside values are 10 degrees of Roll ..
the limit cycle and divergent and 5 degrees of heading error.
in the proper direction for This should be determined for
5 seconds, START when diver- each situation. Slower air-
gence first began. craft change heading faster

for a given Roll angle.

Track: When Roll within 10 degrees of Standard rate turn Target -.

Target Roll angle and Rollrate Roll = IAS * 0.167.
within 1 degree per second, Half standard rate Target
START. Roll I lAS * 0.100.

Rollout: When Heading within (Target
Roll * 0.2) and Target Roll
vs. Rollrate divergent for 5
seconds in proper direction,
START Rollout 5 seconds
earlier or when divergance
first began.

Stop: Heading within 5 degrees of More complex logic would be
desired and Roll within 5 required if rollout is not
degrees of wings level for within 5 degrees.
3 seconds.

Reversal: When Roll passes wings level,
STOP previous turn segment and
START new turn.

2. Climb/Descent For constant Airspeed or
Vertical Velocity (VV) climb
or descent schedule.

Capture: When Altitude error vs. VV The Altitude here is the
divergent in proper direction initial altitude. A nominal
for 5 seconds, START 8 seconds limit cycle is 150 feet of
earlier or when divergance Altitude error and 500 feet
first began. per minute of VV for jets.

Reduce VV limit to 250 fpm. .

for slower aircraft.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)
.. ;[

Segment Start/Stop Logic Comment

2. Climb/Descent (Continued)

Track: When VV within 100 feet per Target VV or Target Airspeed
minute of Target, or Airspeed are the desired values for
within 5 knots of Target, and the climb or descent.

Pitchrate within 0.5 degrees
per second, START.

Leveloff: When Altitude remaining is Special case for penetration
less than 10% of VV, and (jet) descent is to first
VV is divergent from Target reduce to one-half of descent
VV (or Airspeed is divergent rate when 1,000 feet above
from Target Airspeed) for 5 desired leVeloff altitude.
seconds, START levelout 5
seconds earlier, or when
divergence first began.

Stop: When Altitude within 100 feet More complex logic may be
of desired, and VV within 100 needed if leveloff within
feet per minute for 3 seconds, 100 feet does not occur.
STOP.

Reversal: When Pitch passes horizon,
STOP previous segment and
START new one.

3. Acceleration/Deceleration For acceleration, deceler-
tion, and holding constant
speed.

Capture: When Airspeed error from Note: Power should increase
initial speed greater than 5 for climbing or level speed
knots for 10 seconds in the increase. Power should ii
proper direction, START 10 decrease for climbing or
seconds earlier, or when level speed decrease. Power
divergance first occurred. might not increase for

descending speed increase.

Track: When Airspeed within 5 knots Pitch Rate might replace

of Target Airspeed, and Airspeed Rate, or in some
Airspeed Rate within I knot cases rate terms may not be
per second, START. needed. Use Track logic_ -

also for reversal.
Depart: Track segment initiated; use ao rerl

Capture logic, substituting
Target Airspeed for initial
speed.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

4. Altitude For steady-state altitude
holding.

Capture: Use Climb/Descent Leveloff
logic.

Track: Use Climb/Descent Stop logic.

- -Depart: Use Climb/Descent Capture logic.

5. Heading For steady-state heading
holding.

Capture: Use Turn Rollout logic. J* *

Track: Use Turn Stop logic.

Depart: Use Turn Capture logic.

6. Course For capture, track and
depart VOR/TACAN Radial or
ADF Bearing.

Capture: When Radial (or Bearing) error
converging (e.g. the signs of
Radial error and Radial error
rate are opposite), START. .

Track: When the absolute value of Track Crossing error is the
Track Crossing error and angle between the desired
the absolute value of Radial radial (over the ground) and
error are less than 4 degrees the projected ground track of
(5 degrees for Bearings), for the aircraft at each instant
5 seconds, START, in time. Heading can be used

if there is no wind.

Depart: When Track is active and Note: The problem with radial
absolute Radial error is or bearing departure is that-..
greater than 4 degrees (5 the rates of change can be
degrees for Bearings) and affected by distance from the
absolute Track Crossing error station, and to a lesser
is greater than 8 degrees extent by whether one is
and Radial error is diverging inbound to, or outbound from
(e.g. the signs of Radial the station. This general
error and Radial error Rate logic might be simplified for
are the same), then START when specific situations by using
Radial error first went diver- either Track Crossing Angle
gent (or the limits of the error or Radial error rate, ~
window, whichever is least). but not both.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

7. Ground Track For capture, track and depart
of a track (magnetic or true) .

across the ground, rumb line,
great circle or oceanic.

Capture: When Cross Track error and Cross Track error is the
cross track error rate show distance from the track along
convergance, START. a line perpendicular to it,

and may be in miles, nautical
miles, feet, yards or meters.

Track: When Capture is TRUE and Cross The limit cycle will vary.
Track error and error rate are For low level fixed wing
within the limit cycle for 15 flight a course width of 4
seconds, START 10 seconds miles is common, and error -

.* .,earlier, rate for the limit cycle
should be less than 0.1 miles
per minute. For helicopter
Nap of the Earth (NOE) flight
much higher error rates can
be expected; we recommend a
limit cycle of 0.3 times the
acceptable course width.

Depart: When Track is TRUE and Cross Note: This algorithm has
'('pTrack error and error rate are never been tested with data.

outside the limit cycle and It is reasonable for fixed
divergent for 15 seconds, wing aircraft, but NOE flight
START 15 seconds earlier. may need a longer time test.

8. DME Arc For capture, track and depart
of a DME or TACAN Arc,or an
Arc from a know point on the
ground.

Capture: When a previous segment has Typically, the capture of an
ended and DME error and error Arc will occur after crossing
rate are converging in the a prior fix, or tranaitioning
proper direction, START from a previous segment.
capture.

Track: When Capture segment is TRUE Limit cycles will vary with
and DME error and error rate Arc radius and airspeed. A '

within the limit cycle for nominal limit cycle is 0.5.7
f or 15 seconds, START 10 mile and 0.1 mile per minute,
seconds earlier, which should be adjusted with

trial data.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LGC(Continued)

Sget Start/Stop Logic Comment

8. DuE Arc (Continued

Depart: When Track is TRUE and DME
error and error rate exceed
the limit cycle and are
divergent in the proper
direction for 15 seconds, .

* START 15 seconds earlier.

9. Navigation Fix

-'*Crossing: Use the Closest Point of CPA is easiest to compute of
Approach (CPA) or tine when the two methods, but can be
f ix is abeam the aircraft. misleading. If the task is

to cross the fix before
taking next action, such as
a turn, the relative bearing
of the fix from the aircraft
is more reliable than CPA.

10. Holding Pattern

Turn: When aircraft Is abesa the The outbound leg desired
(outbound) holding fix, START Turn heading should be adjusted

Capture, Track, Rollout and for winds.
Stop segments and logic.

Outbound: START tracking of outbound Note: These are "starter"
heading segment when Turn algorithms; the pilot task
Stop logic is TRUE. is to adjust the outbound
Turn:leg track across the ground

Tr: When outbound heading track for winds, or possibly a
(inbound) segment is TRUE, START Turn non-standard rate turn to the

b6 Capture, Track, and Rollout outbound leg. Also, this
segments. logic does not address hold-

pattern entry. More complex
Inbound: Use Course Capture and Track logic may be required.

logic.

11. ILS or GCA Approach Centerline

Capture: When prior segment ends and Course error is assumed to be
Course error and error rate in degrees. Similar to VOR
are converging in the proper or TACAN course capture.
direction, START.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued) N

Segment Start/Stop Logic Comment

11. ILS or GCA Approach Centerline (Continued)

Track: When centerline error and Nominal, trial limit cycle
error rate within limit cycle values are centerline error
f or 15 seconds, START 10 of 2 degrees and error rate
seconds earlier. of 2 degrees per minute.

4.Stop: When Altitude is less than Note: One might wish to
published Decision Height, continue centerline measures
STOP. through to touchdown, or

missed approach measures.rAN

12. ILS or GCA Glideslope

Capture: As dictated by prior segment Depending on procedures, the
and when Glide Slope error and glide slope may be captured
error rate are converging in from above or below it, and
the proper direction. this may be before or after

the capture of GCA centerline
or ILS localizer.

Track: When Glide Slope error and Nominal, trial limit cycle
error rate are within limit values are Glide Slope error
cycle for 5 seconds, START within 0.25 degrees and Glide
3 seconds earlier. Slope error rate within 0.025

degrees per second. Note:
This will vary with aircraft
stability and final approach *

airspeed, and will need fine
tuning.

Decision: When Altitude is less than

Decision Height, STOP Glide

Slope Tracking and measures.V

13. Landing This logic assumes that the
approach ends and the landing
begins at the threshold of
the runway, ramp of the air-
craft carrier, or edge of the
helicopter or VSTOL landing

r pad.

Start: When passing over or abeam
the approach end of the runway,
START landing.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

13. Landing (Continued)

Touchdown: When weight on either main If there is a bounce or skip,
* landing gear (or skid) for 1 the first impact counts as_

second, measure touchdown and the touchdown, but additional
START Rollout. touchdowns should be noted.

Rollout: START when touchdown TRUE; Note: There is no roll-out for -:::
.5-when Airspeed is less than helicopters unless a rolling

40 knots, STOP. landing is made; in that case
the airspeed criterion will
have to be adjusted. Neither
does rollout apply to carrier
landing.

14. Bolter For carrier landing when the
hook fails to catch a wire.

Start: When tail hook passes the #4
wire, START bolter.

Stop: When weight off wheels, STOP. Note: At this point it is
assumed that acceleration and
climb segments will start.

15. Missed Approach or Go-Around

*Start: When aircraft "waved-off" by Go-around procedures vary
control authority, or go- with aircraft. The typical
around is initiated by the sequence will be full thrust,
pilot, START. arrestment of descent,

retraction of gear, and
'5 acceleration to a climb
5' airspeed and flap retraction

schedule.

Stop: When Altitude Rate is greater Note: It is assumed that
than zero, STOP. accelerate and climb segments -

will follow, per the desired
5- procedures.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

16. Formation Stationkeeping

Capture: When DX, DY, DZ and DX rate, DX, DY, and DZ are the dif-
DY rate and DZ rate converging ferences in the X, Y and Z
then START, coordinate axes between the

given aircraft and the target
Track: When DX, DY, DZ (and rates) aircraft (formation leader).

within limit cycle for 15 In some cases, a vector of
seconds, START 10 seconds all three (the slant range
earlier, distance) is sufficient.

The limit cycle will have to
*Depart: When DX, DY, DZ (and rates) be determined empirically for

divergent outside of limit each case; distance and rate
cycle for 15 seconds, START of change will vary with the
when divergence first type of formation.
occurred. ~.~

17. Ground Attack Segments For the roll-in to delivery,
final dive, and recovery from
entries using the box, cone
and pop-up entry patterns. I
For more detail, see Vreuls
and Sullivan (1982).

Roll-in: When Absolute Value of Roll is This is the roll-in to the
greater than 80 degrees for 3 final dive. The Roll-in
seconds, START 4 seconds segment may be subdivided
earlier, for the pop-up maneuver. This

logic will need to be changed
Roll-out: When Roll-in is TRUE and the to suit the delivery task; it

Absolute Value of Roll is represents a starting point
less than 90 degrees, STOP only. -

Roll-in and START roll-out
I second earlier.

Tracking: When Roll-out is TRUE and the
Absolute Value of Roll is less
than 15 degrees, for 2 seconds,
STOP roll-out 2 seconds earlier
and START final tracking.

Release: When trigger is pulled (or Release is a momentary event
weapon is released), START and unless strafing is the task;
STOP release, if strafing, release STARTS

as shown, but STOPS when%
trigger is released.
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TABL 3.EXAPLEMEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

17. Ground Attack Segments (Continued)

Recovery: When g-force is greater than
2 gs for 5 seconds, START
6 seconds earlier.

When positive climb rate is
achieved, STOP recovery.

18. Hover

Capture: When DX, DY, DX rate and DY DX and DY are the positions
rate are converging, START. in the X and Y coordinates .,.

between the aircraft and the
hover point. Alternatively,
the straight line distance
(a vector of DX and DY) may
be used.

Track: When DX, DY and their rates The limit cycle values of
are within the limit cycle DX, DY and their rates wili
for 15 seconds, START 10 have to be determined for
seconds earlier, each measurement situation.

Depart: When DX, DY and their rates

are outside the limit cycle
and divergent for 15 seconds,
START 15 seconds earlier. '

19. Translation To For helicopters and V/STOLV
Forward Aerodynamic Flight aircraft.*

Start: Use Hover Depart Start logic.

Stop: When Airspeed is greater than Translational lift airspeed
translational lift airspeed, will vary with specific
STOP translation. helicopters, but it usually

is about 20-30 knots. For
V/STOL aircraft, use Nozzle
Selector Lever position.
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TABLE 3. EXAMPLE MEASURE SEGMENTATION LOGIC (Continued)

Segment Start/Stop Logic Comment

20. Translation From
Forward Aerodynamic Flight

Start: When Airspeed is less than For helicopters, deceleration
translational lift airspeed logic should be used for the
+ 5 knots, START translation. slowdown from cruise to the

translational lift airspeed.
For V/STOL aircraft, START
when Nozzle Selector Lever is -

moved from full aft position.

Stop: Use Hover Track Start Logic.

* For more detail on V/STOL see Hennessy, Sullivan and Cooles (1980),
Ringland, Craig and Clement (1977), and Naval Air Systems Command
(1975).

-46

o. A.

S" ". 46 .

i. "-". ", m. .



IF 12~ Vu -2 11- w - W ~ .

The power of using windows and a short time history is shown by the turn
segmentation logic in Table 3. This logic assumes that a 15 second time

* history is maintained; flags are placed in the time history when roll angle
and initial heading error are divergent (similar in sign) in the proper (ex-
pected) direction of turn. When roll attitude and heading error are greater
than the limit cycle (10 degrees of roll and five degrees of heading) for
five seconds, the logic looks back to find the first occurrence of contin-
uous divergence, which would represent the time that the pilot first rolled

* into the bank angle to start the turn. We know of no other logic which can
pinpoint the start of a turn this precisely.

Not all logic requires retroactive starting or stopping of segments.
For example, the start of tracking takes place when certain conditions have
been met for a period of time, as illustrated for turn, climb and descent, *

and acceleration and deceleration tracking. Also, some logic decisions can
be made with simple tests, such as a reversal of bank angle (when changing
a turn from left to right or the converse), or passing abeam a navigational
fix.

There are some segmentation algorithms which are so dependent on the .*

desired information (what one measures) that they do not fit the format of
Table 3. For example, segments of acrobatic, basic fighter, and air combat
maneuvers depend on the aircraft characteristics and what one wants to
know. One way of segmenting and measuring these types of maneuvers is
described in Appendix A.

COMBINING LOGICS

For a given flight profile, one would construct measure segment modules
composed of combinations of the logics which are shown in Table 3. When
combining logics, the measurement analyst may have to make decisions on
which of two (or more) possible logics should control the measurement. For
example, if measuring a climbing and descending turn pattern, one may have
to decide whether the turn logic or the climb and descent logic is to

Vcontrol the maneuver segmentation. In typical patterns of this sort, a
pilot is required to turn through a given number-of degrees, and change .

* from a climb to a descent in the middle of the turn; does the logic signal
passing the mid-point of the turn, when the climb reverses to a descent, or
both?

The answer to this question depends on the information which the user
wants, and the interaction between the segmentation logic and measures
which are taken. One can segment the turn task, looking for the rollout on
the desired heading. Also, the climb and descent logic can look for the
reversal from a climb to a descent, and measure the error from the desired
heading at that point, as well as climb and descent performance independent
of the turn performance. ...-

If one constructs the segmentation logic and measures properly, it
should be possible to compare similar task performance during various
maneuvers which contain that task. For example, in climbing and descending.
turns, one can compare (a) climb and descent performance during a turn with

* climb and descent performance while holding a constant heading, or (b) turn
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performance while holding a given altitude with turn performance while
climbing and descending.

Such comparisons make it possible to diagnose performance to some
extent. If a pilot's performance is poor during climbing and descending
turns, but performance is good on constant heading climbs and descents, and
constant altitude turns, it would be rational to conclude that the pilot
just needed practice on controlling both axes at the same time (or for a
non-training study, there was something in the independent variables that
affected good control of both axes simultaneously). If, on the other hand,
turn performance is poor in all cases, one could conclude that the pilot

_- had not learned how to control a turn well, and one might want to provide
additional training on controlling turns (or for non-training studies,
there is something in the experiment that affects turn performance). -

These kind of comparisons are possible only if the segmentation logic .
and measures are exactly the same under all conditions. Similarly, a

*comparison of the data from one study to the next would be aided if the
measures were taken with the same segmentation logic. Seldom, however,
does this occur; typically, measures are controlled by the experimenter or
project pilot, or are constructed from "cleaned-up" time history tapes
after the data are collected for practical reasons.

No one, however, has suggested using a standard method to control
measure segmentation. It is doubtful that measures can be standardized for
all research purposes, but perhaps the use of standard measure segmentation
logic can emerge from attention to these issues, test and refinement of the
suggested segmentation methods.

4, 8.'.
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SECTION 6.

TRANSFORMATION GUIDELINES

Measurement should provide needed information. At the outset, then,
the question should be asked: "What is it that we wish to know as a result
of measurement?" A systematic approach can be developed from this, but
since the number of such questions is beyond our ability to treat here,
measurement will be treated in more general terms.

our emphasis will be on general characteristics of data which can be
described through the use of mathematical transforms. Specific computer
programs also will be presented. It is believed that the reader will be
able to translate information needs into the terms presented here, and
thereby be led directly to the tools for answering application-specific
questions.

The level of discussion in this chapter will be in terms of a range of
potential data transforms. The concept of mapping is fundamental to this
approach. A mapping is a rule for placing the members of one set into 1: 1
correspondence with the members of another set. For example, the average
(or mean) is a rule for mapping from a set of numbers into a single number.
This is the case of many elements being mapped into one. Such mapping is
the basic purpose of the measurement process and therefore the topic of
this chapter.

Although it is thought that the Ideal of measurement is to reduce the
complex down to a single number, one should be reminded of the purpose of
measurement to provide information, and go on to consider the limited
information conveyed by a single number. Rather than dwell on mapping of
"many to one," therefore, and in the interests of general utility, the
mappings ordinarily will be from one set to another full set, or "many to
many." The result of transforming will be a large set, such as a curve;
never-the-less, specific variables of the transformed set will be identi-
fied, allowing simplification. By picking specific variables of the
transformed set, the end result can be a mapping of many to one (or few).

What, then, is gained by many-to-many mapping? Assuming that we have
been recording some continuous variable, we have what may be displayed as a
wiggly curve plotted against a time base. Examination of the wiggly curve
may not be informative in itself. After transforming, however, we can ex-
amine the data in a new "domain," where the curves have new interpretation.

For example, as a result of transformation, the data are now a distri-
* bution of amplitude, or the frequencies contained in the original data, the

interpretation may provide new insight into the nature of the "wiggly
lines". We might say that we have transformed into a new domain with di-
mensions thtimpart insight and meaning. There are no guarantees that
transforming will be successful, and certainly no magic is involved; but
the process has been worthwhile in the past, and is the foundation for much
current measurement.
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The remainder of this section will discuss a number of transforms which

have had past utility or show promise for the future. We will begin with a
discussion of measures for time history data (i.e., "wiggly lines" inked on
a stripchart recorder). The subsequent discussion will include amplitude
distributions, Fourier transforms, simple human operator models, and
reference frameworks for interpretation. Associated with each of these
areas of emphasis will be summaries which should be useful for reference
purposes. A collection of FORTRAN programs is included in the Appendix B.

GENERATION OF SAMPLE DATA O

In order to provide concrete examples and a means for demonstrating
useful computer programs, some example data were generated. Rather than

collect data from real human performance, a computer program THDAT was
written to provide test data in a form for input to other measurement and
analysis programs. The advantage is that the data characteristics are
known, so measurement results are interpreted more easily than with data of

unknown characteristics.

A simple control system is assumed. The human operator has direct
control over a pointer or aiming device, and the task is to keep the
pointer aligned with a moving target; thus, the human is to operate a

simple position control system. Consequently, there are three signals to
monitor: the target motion (TGT), the human operator response (HR), and the
error (ERR) which is the difference between the other two signals.

The target is given an oscillatory motion, which is generated by the
sum of a number of sinusoidal components (0.1, 0.2, 0.3, 0.4, and 0.5

Hertz). To make the motion something which the human operator can track,
the frequencies are held within manageable limits (much less than 1 cycle
(Hertz) per second) and the amplitudes are reduced with frequency. Also,
in keeping with some of the characteristics of the human operator, two
types of delays are included: (a) a time delay, with the human operator
response signal operating about 0.2 second behind TGT, and (b) a phase

delay, with lagging phase angles introduced into the higher frequency
components. Additionally, a small noise component is added at a high
frequency which could be due to tremor or dither in the human operator
control response. In all, THDAT produces one minute of data for one trial.

To show the final result, the data were processed by a computer program

LSTRP3 which plots the data in strip chart format. LSTRP3 is a utility
program which plots on a printer capable of printing in excess of 100
columns across the width of the page. Since this capability is not
available on some printers, and since the strip chart plot is a useful
utility, a version which plots just one signal on 80-column paper (STRIP)
also is presented in Appendix B for reference.

TIME-HISTORY MEASURES -'.'

Information Produced. Specific characteristics of continuous time
history recordings are mapped into specific measures such as peak value or
average value.
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Definition. Strictly speaking, there are no mathematical transfor-
mations corresponding to this class of measures, but we call these measures
"transforms" for purposes of describing measurement structure. We start
out simply by picking out interesting characteristics from the wiggly lines
(cf. output f rom LSTRP 3 or STRIP). The f ollowing is a narra tion of a lis t
of possible measures which may be used to describe such wiggly lines.

Specific measures: Program THMEAS, in Appendix B, was developed to
illustrate time-history measure programming and to provide ready-to-use
tools.

Time on Target (TOT).- The test data were generated under the assumption
of a task involving pointing at a moving object, such as aiming a gun at a
moving target. Some of the early World War II tracking research was per-
formed for such gunnery systems, and a common measure was the time the
operator tracked on target. A tolerance band is established and a clock
started whenever the aiming point was within this band, and shut off when-

* ever outside. Given digital data, the measurement of TOT can be performed
with a single FORTRAN IF statement.

Zero Crossings (ZCROSS). TOT provides a measure of accuracy, but one
also may want some measure of stability, or the smoothness of tracking. A
simple measure of smoothness can be obtained by counting the number of
times (per unit time) the aiming point crosses the center of the target.
For example, the human operator may obtain a large TOT but if the ZCROSS
measure also is high, it will be apparent that the aiming point was
sweeping rapidly across the target.-

Peak Value (PEAK). It also may be of interest to determine the peak
value of error which occurs during tracking to provide boundaries on the
performance. The peak value is computed by examining each data sample and
storing it as PEAK if it is larger than the value previously stored as
PEAK. An extension of this measure could be provided by computing both
positive maximum and negative maximum values. The example program only
stores the greatest absolute magnitude without concern for sign.

Average Error (AE), Absolute Average Error (MAE), Mean Square Error
(MS), and Root Mean Square Error (RMS). In addition to the boundaries of
performance, one may be interested in average performance in the form of
average error. There are a number of average error measures appearing in
the liteiature. The most simple and straight-forward form is AE which is
the sum of error (for each sample of data: error - target position -hman ~
operator response) divided by the number of samples. It will be seen that
error is a signed quantity, and in summation for computing the average
positive and negative errors cancel. Consequently, poor performance can
result in zero value for AE.

One correction is to take the absolute value of error before summation,
and this results in the AAE score. Another approach with some precedence
in engineering and statistics is to square error before summation, and this

* results in the MS score.- A further variation is to take the square root of
the MS score, resulting in the RMS score.
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While the difference between the AE score and the others is clear, the
difference between AAE, MS, and RMS may not be clear. The basic consider-
ation is the effect of squaring error before summation, because squaring
affects large values and small values disproportionately; that is, with AE

and AAE the effect on the end result is in proportion to the magnitude of
error, but with MS and RMS large values are weighted more heavily.

For example, with error values 1 and 2 the sum is 3, but the sum of the
squares is I + 4 = 5. RMS involves a final square root operation, but the
disproportionate summation is still present. The ratio of RMS to AAE, for
example, is not fixed, but depends on the shape of the signal. In a given
study, if the wave shapes stay fundamentally the same, there will be a '1
fixed ratio and there is no point in measuring both AAE and RMS; however,
if the behavior and the waveshape changes, then the ratio of RMS to AAE
will vary, and different results could be obtained depending on the measure
selected.

Reversal Count (REVERS). A basic principle in tracking tasks is that
the operator should always act to reduce error. Any behavior which operates

to increase error is noteworthy (some aircraft instruments, for example,
may promote error increase). Whenever the operator overtly acts to increase
error, such an action may be called a control reversal.

Reversal measurement involves instant-by-instant evaluation, comparing
the direction of control movement with the direction of error. A simple

algorithm for measurement of reversals is to examine error to determine if
it is increasing in magnitude (positively or negatively), and to determine
if the operator control action is moving in the direction of the error

increase. The FORTRAN code for REVERS will be found in THMEAS in Appendix
B. A computer run of THMEAS yields the scores shown in Table 4.

TABLE 4. TIME HISTORY MEASURES

Measure Value

Time (Samples) on Target 105.00

Zero Crossings 54.00

Average Error 0.02

Absolute Average Error 2.28

Mean Square Error 9.77

Root Mean Square Error 3.13

Peak Value -9.29 %.-." .

No. of Reversals 84.00
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d AMPLITUDE DISTRIBUTION TRANSFORM

Information Produced. The amplitude distribution transform divides the
signal amplitude range into a number of bands, and counts the occurrences
within each band. One obtains the frequency of, or the percent of time
within, each band during the recording of a specific continuous variable.
Note that the sequential or temporal characteristics of the original signal
are lost through this transformation; for example, a waveform with multiple
peaks and valleys could have the same amplitude distribution as one with

* one peak and valley. The result is a plot, and from this graphic presen-
tation, one may determine a number of specific measures to be appropriate

* in describing the plots. The amplitude distribution, per se, may therefore
be considered a preliminary data scanning tool. ~..

Definition of the Transform. The expected range of the continuous
variable is divided into equal-sized bands. The variable is sampled at

* equal time intervals, and a band counter is incremented for a band as each
time-sample is tested. The resemblance to the TOT score may be apparent,
and the transformation may be viewed as scoring of multiple TOT tolerance
bands.

There are two forms: the amplitude distribution and the cumulative
amplitude distribution. The procedure just described will produce an ampli-
tude distribution. Instead of incrementing just one band counter for each
data sample, if one increments all bands representing values equal to or

* greater than each sample value (doing this for each data sample in turn),
then the cumulative form of the distribution results.

* The amplitude distribution corresponding to the test data is presented
in Figure 3 and the cumulative distribution for the same data is presented

* in Figure 4. The corresponding FORTRAN programs, AMPDIST and CUMDIST, are
* available for reference in Appendix B.

From either of these presentations, one can readily identify the -: 4
.Jsmallest value, the value for which 100 percent of the data was smaller 4

* (or, in other words, the largest value), and the value for which half of
the data were smaller and half larger (the median value). The median value
is more precisely read from the cumulative distribution. The cumulative .

distribution has the distinct advantage of being less sensitive to the size
of amplitude bands selected. If the amplitude bands which are selected areA.
too small, then a rather ragged plot results. The selection of amplitude 7

-. band size often is a tedious iteration.

Specific Measures. The amplitude or cumulative distribution ordinarily *.

would be producedto see the shape and general characteristics of the
distribution. The distribution could be bi-modal, or highly skewed. Perhaps
after such preliminary visual screening, other computer programs could be

* used to determine the specific characteristics of the distribution. -
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For example, program MISR is provided in Appendix B to measure the -

moments of the distribution. If the distribution is normal, measurement of
the mean and standard deviation are in order; note, however, that the mean
was discussed with time-history measures, and that the RMS provides a
measure of the standard deviation. If the distribution is not normal (many

P. human performance distributions are not normally distributed), then the
median and quartile range may be the measures of choice. The distribution
of absolute error for a tracking, or error nulling task, for example, often
follows a Poisson distribution, in which the mean and standard deviation
are nearly the same; in this case, measures of both would be redundant.

It is important for measure selection to know the characteristics of
the amplitude distribution of variables of interest; this step in measure
development is overlooked frequently, but should not be. r
FOURIER TRANSFORM

Information Produced. The Fourier transform provides a representation
of the original signal in terms of sinusoidal frequency components, each
component being described in terms of an amplitude and phase angle charac-
teristic. This representation for human control performance provides a
basis for discussion in control engineering terms, in the same language as
is used for describing and analyzing the rest of the system.

Definition of the Transform. If the given signal is periodic, that is,
it repeats every T seconds, the Fourier theorem states that the signal can
be represented by a (possibly infinite) number of sinusoidal components
(harmonics) with frequencies 1IT, 2/T, ... , n/T Hertz (cycles per second).

* - That is, the signal can be represented in a form similar to that used in
program THDAT to generate example data.

The formula is: f(t) - aO + summation( an*cos (wnt)+bn*sin(wnt) ] where
-- w-2*pi*(I/T) and n-1,2 ..

If the given signal is aperiodic, a similar representation is possible,.4
but the component frequencies are infinitesimally spaced, resulting in a
continuous spectrum. The resulting function is referred to as an amplitude
density spectrum, and a related function is the spectral power density.
Note that for periodic functions one obtains what is called a line spectrum;
that is, rather than a continuous spectrum, a series of discrete harmonics
plots as a equi-spaced series of vertical lines.

Specific Measures.* A computer program suitable for performing a Fourier
transform of the example data (PFOURIER) is included in Appendix B, and the
results are tabulated in Table 5 and plotted in Figure 5.
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TABLE 5. FOURIER COEFFICIENT

FREQ COS SIN AMPL PHASE
.000 -. 025 .000 .025 90.
.016 -.051 .020 .055 -68.
.033 -.051 .031 .060 -59.
.050 -.052 .054 .076 -44. -.

.066 -.055 .097 .112 -30.

.083 -.061 .202 .211 -17.

.100 -.665 9.789 9.812 -4.

.117 -.039 -.175 .179 -167.

.133 -.047 -.059 .076 -141.

.150 -.053 -.006 .053 -97.

.167 -.058 .046 .075 -52.

.183 -.072 .155 .171 -25.

.200 -.660 4.827 4.872 -8.

.217 -.027 -.213 .215 -173.

.233 -.044 -.094 .105 -155.

.250 -.054 -.041 .068 -127.

.267 -.064 .008 .064 -83. .

.283 -.083 .104 .134 -39.

.300 -.612 2.878 2.942 -12.

.317 -.027 -.232 .233 -173.

.333 -.055 -.123 .135 -156.

.350 -.075 -.079 .110 -137.

.367 -.103 -.045 .113 -114.

.383 -.174 .010 .174 -86. ,

.400 -1.872 1.109 2.176 -59.

.417 .115 -.164 .200 145.

.433 .022 -.103 .105 168.

.450 -.016 -.078 .080 -169.

.467 -.051 -.060 .079 -139. A

.483 -.123 -.035 .127 -106.

.500 -1.422 .314 1.456 -78.

.517 .160 -.102 .190 122.

.533 .071 -.075 .104 137.

.550 .042 -.065 .078 147.

.567 .028 -.059 .065 155.

.583 .018 -.054 .057 161.

.600 .011 -.050 .052 168.

.617 .005 -.047 .048 173.

.633 .001 -.045 .045 179. -'.

.650 -.003 -.042 .042 -175.

.667 -.007 -.040 .041 -169.

.683 -.013 -.038 .040 -161.

.700 -.020 -.036 .041 -151.

.717 -.032 -.033 .046 -136.

.733 -.063 -.028 .069 -115.

.750 -. 480 .015 .480 -88.

.767 .084 -.042 .094 117.

.783 .036 -. 036 .051 225. "

.800 .022 -.034 .040 147.

.817 .014 -.032 .035 155.
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Transfer Function. If a Fourier transform is produced for the input to.
the human operator (for the example, this is a Fourier transform of the
target motion), and if a Fourier transform is produced for the human opera-
tor response, the input/output relationship of the human operator can be
examined on a frequency-by-frequency basis. If this is done for the
example, it will be seen that there is some attenuation and phase delay for
the higher frequencies, and the introduction of a high frequency not pre-
sent in the input (noise). This approach is the basis for many control
theory models of the human operator, including the quasi-linear transfer
function model (McRuer and Krendel, 1957).

Band Width. Consideration may be limited to just the frequency band in
which spectral power is concentrated. This is measured as the frequency

band between points on the spectrum at which power is down one half the
central or nominal value (or what is equivalent, the points at which ampli-
tude is 0.707 the nominal value). Such data are often useful in the engi-
neering of the control system.

Signal and Noise. As pointed out in the example, additional power (or
noise) can be determined with the Fourier transform; the amount of noise,
or the ratio of signal to noise is also of value in system assessment and
design.

Data Collection Considerations. The sampling a continuous signal, and ""
then using the sampled data for analysis, can introduce artifacts into the
frequency analysis. A problem, called aliasing, is introduced when sampling
is performed at a rate less than twice the highest frequency component in
the signal (see Blackman and Tukey, 1958). That is, if the highest fre-
quency component is I cycle per second, such data should be sampled at
least twice per second. This criteria, while developed for Fourier trans-
forms, is often used in practice for the sampling of data for other uses.

INPUT-OUTPUT RELATIONSHIPS

The previous sections generally have addressed the measurement of one
variable at a time. Where the human operator's response is the result of
specific stimuli, however, the relationship between display-input and
operator-output can be of more interest than either alone. This subsection
will examine some basic tools for analysis of relationships in the context
of models of human operator input/output (e.g., human operator transfer
functions). This is an extensive subject which will not be pursued
comprehensively; in the following, a rather simplified approach will be
taken just to provide basic illustrations.

Linear Regression. A possible model for human operator control is that
the human output is proportional to the displayed input (to the extent that
human output can produce such a response accurately). One might have to
augment a linear response with time delay and lags at high frequencies to
produce an output similar to that which is actually produced by human
operators. For the example data which we have been using we know that
there are delays and lags, but otherwise a reasonable approximation to a
proportional response is exhibited. In fact we are aware that the data
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were created with a time delay, roll-off at high frequency, phase lag along
5-5- with the roll-off, and high-frequency noise.

The specific procedure is to use a regression analysis to find the
equation y - bO + bi * x where y is the human operator's response (HR) and
x is the stimulus signal (ERR). The delay factor is incorporated by
shifting the data so that previous stimuli are paired with latter
responses. In brief, the procedure is:

I. Shift data so that input sample n corresponds to output sample
n-I-, input sample n+l corresponds to output sample n+2, etc.

2. Perform a regression analysis and determine Rsquared (the amount
-V of variance accounted for).

3. Repeat steps (1) and (2) until sufficient analysis has been con-
ducted to determine the shift (time delay) which yields the maxi-
mum Rsquared.

The model being suggested at this time is simply a proportional response
with a time delay. The proportionality constant (or gain) can be determined
with a regression program like MULTR, and the time delay found by shifting*
the data samples for human response so that samples are being correlated
with input target samples one, two, or three samples earlier in time (up to
a few tenths of a second shift) to find the shift which provides maximum
correlation. A program like CROSS can also be used for this purpose. If
there are multiple inputs to which the human operator is responding (e.g.
altitude, rate of climb, acceleration, etc.) then a multiple regression
program like MULTR should be used to find the best linear combination of
inputs to predict the operator's output.

Describing Function Model.- Another approach, previously alluded to, is
to examine the time delay, gain and phase shift for each input frequency
(five components in the example data) and to combine all other aspects of L
the operator's response into a noise, or remnant, term. This is the
approach taken in many well-used and successful control engineering models
(cf., McRuer and Krendel, 1957). In brief, the approach is to:

1. Determine the magnitudes and phase angle of specific frequencies
in the input signal.

2. Determine the magnitudes and phase of the same frequencies in the ,

sc operator's output.

3. Compute the ratio of the magnitudes and the difference in phase
angles.

4. Fit a polynomial equation to these data.

The purpose of this discussion is to suggest possible transformations
and measures which may be applicable to some unknown specific application.
For example, for a particular case, one may be interested in only the point
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at which roll-of f occurs, or the nominal gain, or the time delay, or just
the noise component. Note that a Fourier, or sinusoidal, representation
must be possible for the input signal; however, this situation can be
created in signals generated in the laboratory, and for many non-stochastic
signals in natural environments.

Optimal Control Theory. Various performance criteria can be applied
.4. to a given control task. For example, it may be desired to achieve a spe-

cific goal in the minimum amount of time; it may be desired to achieve the
objective having used the minimum amount of fuel; it may be desired to
minimize the magnitude of certain system states.

An optimal control policy is one which minimizes some performance index
4 within whatever constraints may be placed on the control exerted (e.g.,

control is finite, limited by available control movements and available
power). It may be seen, therefore, that there is no universally optimum
control policy; it depends on the specific performance index which is
defined.

Optimal control theory is of interest for describing human performance
for at least two reasons: First, the optimal control for a specified
performance index can serve as a standard of comparison for the control

* behavior exhibited by the human operator; this point of view will be
discussed in the next section on interpretive frameworks.

Second, optimal control theory can be used to determine the perf ormance
index which is optimized by the exhibited human control behavior. Any
control behavior can be viewed as optimum for some performance index. If
that performance index can be identified, one is provided with a mapping of
control behavior into a set of performance index parameters, such as
weight ings of control and vehicle states for which the control exhibited is%
optimum. The use of performance data and optimal control theory to findX

* the performance index being optimized has been called the "inverse optimal
control process."

This approach was identified by Obermayer and Muckler (1965) for the
selected class of linear systems and quadratic performance indices. The
approach was used effectively by Connelly (1977), wherein performance was
pre-computed for various performance indices, and then specific control
behavior was matched with this set to determine the approximate performance
index for which the behavior was optimum.

The determination of the inverse optimal control policy can be a major
challenge except for specific classes of control problems, however, the '%%
Connelly method can be applied to ordinary experimental data. Briefly, the
procedure is as follows:

1. Calculate the performance which would result from a broad selec-
tion of performance indices.

2. Compare the performance resulting from each of the results of (1)
to the specific experimental conditions of interest (e.g., each
subject experimental trial, each display design, and so forth).
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3. Pick the performance index which yields the best match.

4. Test the representation using a regression analysis performance of
the selected model to predict performance across subjects.

INTERPRETIVE FRAMEWORKS

State Space Representation. A physical system can be described in
terms of a number of variables, so that specification of these variables at
any time fully define the system state so completely that, with the :_4
appropriate model, future states could be predicted. If each state
variable is then taken as the axis of a coordinate system, the complete
history of a system can be described as a path in this state space. .- .-...

The state space can have a large number of dimensions, but a useful
analysis tool is the phase plane, which plots position (x) against velocity -M
(xdot), with x being a selected state variable.

State space and phase plane representations can be useful transforms
for manned systems. For example, for aircraft landing, one may plot
altitude (position) against rate of descent (velocity) using program PLOT
to provide an informative look at the landing profile. Such a look may
suggest specific measures of interest, such as the rate of descent at
several specific altitudes.

State Space Cells. While each dimension in state space may be a con-
tinuous variable, it may be useful to divide each dimension into parts
(e.g. high-, medium- and low-altitude), and thereby divide the space into a
number of cells. If the division is done properly, each cell will contain
all performance which can be considered the same and is treated in the same
manner by the analyst. Several examples should serve to illustrate this
technique.

I. Phase Plane Tolerance Measure. Consider a plot of error on one
dimension of a phase plane, and the derivative of error (error rate) on the
other dimension. One may draw a tolerance circle, centered at the origin,'
which divides the space into two regions: outside the tolerance circle is
the region of unacceptable error and error rate; inside the tolerance
circle is a region of acceptable performance.

It may be noted that when error and error rate are opposite in sign,
the operator is correcting the error (reducing the amount of error), and
therefore is exhibiting desirable behavior. Alternatively, one may wish to
count performance as being poor when it is outside the tolerance circle and
also in one of the quadrants where error and error rate are the same sign
(there is error, and it is increasing).

2. Air Combat Maneuvering Space. Air combat tactics often are
discussed in terms of range, line of sight (angle off other aircraft off
the nose axis) and aspect angle (angle off the tail axis of the other
aircraft). Consequently, a three-dimensional space can be created usingeach of these variables as an axis. Further, regions of range, specific
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regions of line of sight and aspect angle define conditions where it is

appropriate to launch weapons, take evasive action, and execute specific
offensive maneuvers. Using these variables as a guide, it is possible to
divide the space into cells which represent specific types of tactical
challenges.

3. Surface Ship Maneuvering. Consider the task of maneuvering a ship
through heavy ship traffic without colliding with other ships. The primary
variables of interest are (1) the closest point of approach (CPA) to each
ship when the paths of each ship are projected into the future, and (2) the
time to the closest point of approach. These variables can be further
divided to regions (0-1.5, 1.5-2.0, 2.0-2.5, and above 2.5 miles for the
CPA; 0-5, 5-10, 10-15, 15-20, 20-30, and above 30 minutes for the time to , .
CPA). Consequently, the state space (plane) is divided into cells which
can be used for analysis. For example, performance can be viewed as the
process of transitioning from one cell to another, and one can measure the L
probabilities of these transitions.

4. Low Level Flight. Consider the task of flying a low level or NOE
flight; the centerline of the desired course is plotted on a map, but it
may not be necessary to be on the course centerline at all times, espe-
cially if the pilot knows his current position and is flying directly
toward the next checkpoint; typical low level flight performance weights
fuel consumption and time crossing each checkpoint heavily. A state space
similar to the one described above for ship maneuvering can be constructed ".
for the projected CPA at the checkpoint versus miles to go, and transitions
to (and occupancy within) acceptable states may provide more satisfactory
descriptions of pilot strategy and performance than centerline error.

5. Transitions. Frequently, there are families of acceptable curves
of performance when transitioning from one steady-state to the next. For
example, when turning over a checkpoint to capture a new outbound course
there are various school solutions, which dictate the angle of bank to use
and the desired intercept angle. These rules vary with the situation, but
one can measure error from the ideal, or the parameters of a control law
model of the transition.

Alternatively, one may simply score performance in regions of the phase
plane using the rationale that as long as the pilots are converging on the
course within acceptable boundaries of error and error rate, they are
performing properly. If the convergence is too rapid for the situation,
the aircraft is likely to pass through the course centerline and limit
cycle, and be "caught" for being in an area of divergence. If pilots are
not capturing the course quickly enough, a "maximum" time allotted for the
transition can capture that fact. These methods can be used as well to
score convergence on (or divergence from) ideal parameters for weapons
release during air-to-ground and air-to-air weapons delivery tasks.

Performance Boundaries. In some cases the requirement for measurement

computation is to derive complex criteria which is then used to assess raw
untransformed performance variables. A case in point is the use of energy
maneuverability diagrams for air combat maneuvering (Pruit and Maroney,
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1980). The ability to out-turn an opponent is of paramount importance in
air combat maneuvering; therefore, these diagrams show turning rate as a
function of velocity (airspeed or Mach number). While performance may be
assessed on this plane, the diagrams are drawn only for a specific alti-
tude, requiring a three-dimensional space, but pilots typically view this
as a plane with changing characteristics. A sample of this diagram (Figure
6) is shown below: "

f..'.

fJ ANSI I 13 Ma

T4

• =" "ka.'.

VILOCITY

Figure 6. Key Turning Conditions on Turn Rate-Velocity Diagram.

Performance is bounded on an energy maneuverability diagram by two

curves: one which reflects the maximum possible lift, and the other which
reflects the maximum load (g's) which is allowed by the strength of the
airframe structure. The point where these curves meet (Ti) indicates the
maximum rate of turning (called turning on the "corner"); however, since
this point also represents a region of high drag, the maximum turn rate
cannot be sustained. A'.

The two bounding curves can be overlaid with a third curve (T4, T2, T3)
which represents performance in which thrust (at military power) and drag
are balanced. Below this curve there is an excess of power available and
above it deceleration and/or loss of altitude must occur. T3 denotes the
maximum turn rate which can be sustained; T4 denotes the minimum turn

*. . radius which is possible; T2 is the maximum sustained turn rate at the
corner velocity (allowing momentary excursions to the maximum turn rate).
Another consideration is that the curves of the energy maneuverability
diagram must be re-computed for each change in altitude..-. f

Performance can be measured as the error between actual conditions and
optimal values, and the time required to achieve optimal. Furthermore, -
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where two dissimilar aircraft are engaged in battle, two sets of curves can
be overlaid and tactics can be assessed by noting whether the flight
variables favor one aircraft or the other.

The point here is that performance variables (velocity, turn rate,
g's, altitude) are not transformed; it is the criterion vhich presents a
problem for measurement processing. Once performance is presented within
the energy maneuverability diagram, the raw data are imparted new meaning
and additional transformations can be generated (e.g., measures of nearness
to optimal conditions, and time to attain changed conditions).

Cost-to-Go. It is commonplace to establish a fixed path in space as a
reference path in space and to measure all deviations from this path as
error. For example, the glideslope and localizer beams establish a fixed
path for instrument landing; it is easy to measure glideslope and localizer
deviations, and to use these as a basis for measurement computations.

It does not necessarily follow, however, that once displaced from an
nominal path in space, the best performance strategy is to return
immediately to the nominal path. Once displaced from the path, another
optimal path may be established, and further, if the operator is making
correction, one may not wish to excise a performance penalty for the3
deviation which exists at the time.

Following techniques developed by Connelly and Zeskind (1975), it is
% possible to establish an optimal path for all points in space, not just a
*fixed nominal path. Given a performance index, its value (which can be

viewed as a cost function) can be established as the minimal cost to go to
the desired goal. This may be subtracted from the cost-to-go calculated

for the operator's performance yielding only the excessive cost (the non-
optimal part). Not only does this permit comparison to a reference whichj
always reflects optimal performance, it also provides an instantaneous
performance measure, permitting one to easily determine where critical
instances of poor performance occurred. The instantaneous cost-to-go40
measure, therefore, can provide a basis for diagnostic measurement of the
operator's performance.

GUIDELINES FOR MEASUREMENT SELECTION ....

Unfortunately, there are few concrete solutions to human performance
measurement problems. On the other hand, one should not conclude that
measurement selection and design is totally arbitrary. The problem is that

information needs are specific to each situation, and the kit of tools is -

extensive, creating a measurement design problem with many dimensions.

The taxonomy of human performance measurement has not been detailed.
Consequently, it is not possible to offer a comprehensive and structured
discussion of measurement design. It is possible, however, to discuss a
number of measurement applications which collectively involve a range of
measurement tools which can be adapted to a majority of measurement
problems. This is the approach to be used in the following paragraphs.
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An application will be defined, the desired information identified, and
a possible avenue to measurement will be discussed (one which is believed
to be well suited to the application). Thus, for any application, the
measurement designer may view the problem as a combination of several of WM
the examples which are presented here and construct an appropriate
composite set of measures.

Data Exploration. Perhaps one of the most difficult applications,
insofar as prescribing a specific measurement approach, is the case where
one is exploring experimental data in the attempt to discover unknown
characteristics and relationships. One may be uncertain about the quality
of the data; therefore, it is desirable to process data to develop some
confidence in the usability and reliability of the data.

Data exploration measurement commonly includes time history measurement
and plots of amplitude distribution for individual subjects and trials, as -

well as averages across trials and subjects. Outlying data points, multi-
modal distributions, and data variability should be evident from this data
treatment. Confidence about data quality may be gained if some measures
are collected where some characteristics of the data are predictable, and
if, of course, the expectations are confirmed.

Since data characteristics and relationships often are perceived more
readily in pictorial form than lists of numbers, the use of automated -

plotting routines can be beneficial. If the data characteristics are
unknown, it is difficult to be more specific than this; otherwise, if the
problem matches prior investigations to any degree, then the work of other-
investigators may help point the way.

Measurement to Derive Information for a Specific Class of Users. If
the purpose of measurement is to derive information for specific people,
for example presentation of student performance to a military instructor, .-

then the information is largely defined by that which the instructor and
student needs and will understand. Measurement design should be preceded
by an information requirements analysis.

It should be clear that the primary displayed information must be in
terms that the user can understand and apply; ordinarily, this is the
measurement of time within tolerances, snapshots of state variables at
critical instances, and identification of common student errors. One may
wish to consider esoteric forms of performance measurement for the support
of automated training functions as well as for information for display to
the user personnel; however, in the latter case the training implications
may have to be translated into statements in the language of the user.

* Fixed Profiles. The measurement of performance for vehicle control
along pre-specif ied profiles (paths) in space is perhaps the situation with
the most extensive history. Amplitude distribution measures and snapshots
of profile variables has been the most extensively used measures. One
should note that these do not yield much information about human control
behavior, and that human operator models, optimization theory (e.g. per-
f ormance index optimized) , and f urther segmentation (e.g. , separate analy-
sis of path capture and tracking) should be considered.
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Tactical Maneuvering. The maneuvering of a vehicle in combat, where
the consequences of actions are uncertain and strategies vary from moment
to moment, is an area which is not fully understood by the experts, and
what is understood may not have been well articulated. The measurement
designer is understandably on unsure ground; however, two suggestions have
been made earlier in this section. One Is the development of complex cri-
teria such as energy maneuverability diagrams; the other is the use of
state space measures and the subdivision of state space into cells where
measurement is more tractable (i.e., divide and conquer).

Control System Design and Analysis. There are well established methods
for the design and analysis of automated control systems, and these have

* been adapted for use with manual and semi-automated control systems. It
follows, to be useable, that measurement must conform with the existing
design and analysis methods. Consequently, for these applications, some

* form of human operator control model must be employed. Some simple models
were mentioned earlier in this section. Fortunately, simple and approxi-
mate models of the human operator and the machine subsystems often have
been successful for control system analysis.

Display Evaluation. Measurement for the evaluation of alternative
display designs is facilitated by information about the expected differences
in performance to be produced by the displays. The expected differences in
performance can include operator control behavior, operator decision behav-
ior, and mission performance. Each of these represents a different .

measurement problem which has been previously discussed. Variations in
operator control behavior should be reflected in the parameters of an
appropriate model. Decision behavior may be reflected by transitions in
state space or by changes in the performance index which is optimized. *.-

* Mission performance can be expressed in some form of amplitude distribution
* measure.

Performance Diagnosis. Diagnosis, such as the identification of the
need7 for specific forms of remedial training, may be a stated purpose for 5
measurement. Diagnosis may be defined as the classification of performance
so that the resulting classes map 1:1 with potential remedial action. The
classification may depend on any of the forms of performance measurement
discussed above, and identification of the specific measures to be selected
require that the measurement designer have some understanding of the
underlying behavior (possibly determined through structured empirical
tests).

There are two approaches to diagnosis which will be treated in a later
section. One is a stochastic approach while the other uses expert system
techniques derived from the field of artificial intelligence. The first
has the advantage that the statistical methods help to pick a useable
measure set from a larger set of candidate measures, while the second
approach leads to specification of the measures through analysis of the
knowledge of expert diagnosticians.
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SECTION4 7.

COMMENTS ON PERFORMANCE DIAGNOSIS
FOR RESEARCH AND TRAINING

The preceding sections have discussed the structure of measurement,
sampling considerations, segmentation logic and possible transforms. When

* selecting and developing measurement for research or training, there are
performance diagnosis techniques which can be used to refine measures,
develop global performance functions, and examine complex performance.

-. Two approaches to automated performance diagnosis will be discussed
here. One is a statistical technique which uses performance data from
known groups to derive algorithms for predicting group membership from test

*samples of performance data. The other is a technique adapted from
artificial intelligence research which determines if test samples of
performance match anomalous characteristics specified by subject matter
experts.

MULTIVARIATE DISCRIMINANT ANALYSIS

The multivariate discriminant analysis produces a linear combination
of available data as a single computed variable which best discriminates
between the performance of groups with known characteristics. For example,
these groups may consist of expert and novice performers, or groups of

* desired performance and specific performance inadequacies. The resulting
discriminant functions can be used on data acquired during later training
or research to obtain a classification to characterize the performance
which was exhibited.

A geometric interpretation of discriminant analysis is shown in Figure
7 (from Cooley and Lohnes, 1971). The figure shows the case of two groups
and two performance measures, but keep in mind that a much larger number of
groups and measures is possible. Each circle is the locus of points of
equal frequency for a group. The pairs of points for the intersection of
corresponding contours in each group define a straight line (II), and we .~ .

may also construct another line (I) perpendicular to line II. If the
points in the two-dimensional space are projected onto line I, the overlap
between the two groups will be smaller than for any other possible line.
The discriminant function is a transformation which combines the individual
performance measures into a single score, and that score is a location
along line I. Of course, real human performance data are seldom as clear
as this illustration.

The point b divides the discriminant line into two regions, one
A indicating probable membership in Group A and the other indicating probable

membership in Group B. Suppose that Group A consists of data collected

from subjects exhibiting desirable performance and that Group B is from
subjects exhibiting a specific performance anomaly. The discriminant]
function can be used to classify the performance of a test subject to one
of the Groups; that is, the discriminant performance can be used to
diagnose the subject's performance. If the procedure was extended to
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include Groups C, D, ... , each with a specific performance anomaly, the
diagnosis can indicate the identity of the performance deficiency and
corrective action can be taken (e.g., remedial training).

Suppose that Group A consists of data from expert p,.formers and that
Group B consists of data from novices. The discriminant analysis can be
conducted with a relatively large set of candidate measures, and it can be
noted which of these contribute heavily to the discriminating power. Those
which do not contribute to the discrimination can be eliminated as these
measures can be viewed as being insensitive. Thus, the discriminant k__.
analysis can be used as a measure selection tool, even if the discriminant
function itself is not directly useful. Common univariate analyses can be -.
used for the same purpose, but correlations between measures might not be
sensed.

Quantities of data might be required for fruitful application of this
statistical technique. Data ordinarily are collected for any measures
which are suspected of contributing to an ability to discriminate between
the required classes of performance, and then the most useful set of
measures are weeded out. Data must be collected for a representative set -_
of subjects and for a number of repetitions large in comparison to the
number of different types of performance measures. The end result is that
extensive data collection might be required.

Over the years, we have developed a set of multivariate measurement
analysis routines, some of which can reduce the amount of data which is
required by standard multivariate analysis methods. These routines can be
used to (a) remove highly correlated measures, (b) remove data "outliers"
which tend to distort correlation based on least squares regression
criteria, (c) adjust the resulting model for possible "overfit" and
shrinkage" of weighting coefficients by applying "ridge-regression"
techniques to the multiple discriminant analysis, and (d) provide a non-,
parametric discriminant analysis based on Tukey's "Quick Test of Location"
for those cases where there are insufficient observations or degrees of
freedom to use a parametric model.

Fragments of these techniques have appeared in our past reports, but
there is no source which has put together these methods and our adaptations
of them in one document. We thought it useful, therefore, to include a
discussion of these techniques as Appendix C. Also included are FORTRAN
program listings of the analyses. The reader is referred to Appendix C for
greater depth, and to assess the tradeoff between potential benefits and
associated costs of data collection and analysis associated with these
techniques.

KNOWLEDGE-BASED SYSTEMS APPROACH

Computers currently excel in high-speed calculating and in storing and
retrieving large amounts of data; however, such computations can solve only
a fraction of human problems. The challenge is to have machines that are
capable of "thinking," or at least emulating the ways humans draw upon past
experience to solve new problems. Work on computerized expert systems grew
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out of earlier work in artificial intelligence to make computers perceive,
reason and understand.

This work has now progressed out of the laboratory and there are over
two dozen practical systems in operation. Knowledge-based systems perform
some of the most difficult decision-making jobs that include use of
judgment, rules of thumb, and experience. This approach is of particular
interest here because there has been success applying these techniques to
automating human decision ability where the - spot-a-pattern, draw-a- K
conclusion" style of reasoning is used by experts.

HYPOTHESES ~ %

FACT INERENCERUE

CRITIQUE
DIAGNOSIS j

Figure 8. Block diagram of a knowledge-based system.

A specific form of knowledge-based system which can be applied to the
task of human performance diagnosis is shown in Figure 8. It is often
called a production rule system, rule-based system or if-then system. For
the current application, the hypotheses will be specific diagnoses, the
facts will be selected performa-nce measures, and the rules will be if-then
statements which collectively permit the knowledge-based system to conclude0.
whether any of the hypotheses can be substantiated.

The Inference Engine is the control part which attempts to conclude
that one of the hypotheses is true. A subtle key to the effectiveness of
this apprfoach lies in the separation of these parts of the knowledge-based
system. Furthermore, the importance of these parts is not equal, however,
as there is some consensus in the Artificial Intelligence community that
the power mainly lies in the knowledge base (the rules), and not in the
inference procedure.

Requirements for knowledge acquisition. An extensive, labor-intensive
effort is required to extract subject matter expert knowledge required to
d efine the knowledge base of rules. Knowledge is currently acquired in a
very painstaking way in which individual specialists (Knowledge Engineers
(KEs)) work with Subject Matter Experts (SHEa) to extract a complete and
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consistent knowledge base. The information to be extracted from the SHE
includes not only the factual knowledge which may be found in textbooks,
but also the rule-of -thumb heuristics which are not published and which the
SHE may not be able to articulate readily. While an abundance of data is
not available, it appears that the knowledge acquisition process may have *

required 2-3 years for existing large-scale systems (e.g. medical
diagnosis).

Inferencing methods. There are two basic methods for automated
inferencing: the forward-chaining method and the backward-chaining method. -

The forward-chaining method simply tries all rules; if any new conclusions
are derived, they are added to the stored facts, and all rules are tried
again. This process stops only when a complete pass through the knowledge
base yields no new facts.

The backward-chaining method starts with specific hypotheses and
% searches for the rules which collectively can conclude the specific

hypothesis. A hypothesis is selected (in order on a list) and a rule is
found which can conclude that the hypothesis is true. The if-part of this
rule is examined to determine whether an if-statement is part of the Facts
list, or whether there is another rule which can conclude that the if-
statement is true. The latter involves scanning the rules for a rule with
the appropriate then-part, and then attempting to determine whether the if-
statements can be verified. This verification process is recursive, with
the verification function using itself repeatedly.

* While the two inf erencing procedures are similar, there are some
substantial differences. The forward-chaining method requires no statement
of hypotheses, the procedure simply derives any conclusions which are
possible, whether they are hypotheses or just intermediate facts. All
rules are exercised repeatedly; therefore, the backward-chaining procedure

* may be quicker. The backward chaining procedure, however, requires large '
* amounts of computer memory for processing, while the forward-chaining pro-

cedure requires little more than the static storage capability.

An example. In air combat maneuvering, the High Yo-Yo is a maneuverP
designed to be used at low angle-of f (the aircraf t axes are nearly in 0
alignment), low aspect angles (the angle to the attacker off the defenders
tail is small), and high overtaking speed. When attackers realize their
present overtake will cause a flight path overshoot (which may make them a
defender), they may use the High Yo-Yo, which is a maneuver out of the pre-
sent plane of turning. This rule may be expressed as the following LISP
statements (other AI languages could be used as well):

(IF (OFFENSIVE) (HIGH OVERTAKE) (ANGLEOFF < 40)) (THEN (USE HIGH YO-YO))
(IF (CLOSING RATE < -1500)) (THEN (HIGH OVERTAKE))

* Furthermore, if the pilot executes a High Yo-Yo, there are a number of
errors which occur frequently (Common Student Errors). These may be
expressed as rules such as the following (TED - to be determined):

* (IF (HIGH YO-YO)(ASPECT > TBD)(ANGLEOFF > TBD))(THEN (COMMON STUDENT
ERROR 1))
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(IF (HIGH YO-YO)(BEGIN HIGH YO-YO BEFORE TBD)(PITCH ANGLE > TBD))
(THEN (COMMON STUDENT ERROR 2)(EXPECT DEFENDER TO UNLOAD AND SEPARATE)) 1.

(IF (HIGH YO-YO)(BEGIN HIGH YO-YO AFTER TBD)(PITCH ANGLE < TBD))
(THEN (COMMON STUDENT ERROR 3)(EXPECT TO OVERSHOOT))

(IF (HIGH YO-YO) (DURING ROLLOUT)(G < TBD))(THEN (COMMON STUDENT ERROR
4)(EXPECT TO OVERSHOOT))

Note that this set of rules is only suggestive and not complete. However,

it may be seen that the inference engine can conclude that the conditions
are right for the pilot to execute a High Yo-Yo, and measurement can

*proceed to determine whether such a maneuver was executed.

This provides some capability for diagnosing the pilot's decision
making. Further, given that High Yo-Yo is added to the Facts (being
executed), the inference engine can proceed to further diagnose whether
expected errors occur. During this period the High Yo-Yo Common Student
Errors would be added to the Hypotheses, and backward chaining would seek
to verify each of these common errors.

If the set of rules was no more extensive than defined above, there
would be little need for artificial intelligence techniques. For a
problem as complex as air combat maneuvering, however, one can establish
hundreds of rules, requiring a more-sophisticated implementation.
Nevertheless, once such a system has been developed and tested, it may be
possible to reprogram in more conventional languages (e.g. FORTRAN or
PASCAL, rather than LISP) and possibly with more conventional techniques.

COMPARISON OF APPROACHES

Diagnostic technique. While the same goal is shared by the multi-
variate and knowledge-based approaches, the basic source of diagnostic
material is quite different. The multivariate statistical approach derives
diagnostic algorithms from samples of pre-classified performance data; the
knowledge-based systems approach derives inferences from rules extracted
from the knowledge of subject matter experts. The multivariate statistical
approach may have an advantage where the basis for diagnosis is obscure,
unknown, or beyond the ability of subject matter experts to articulate.
The knowledge-based systems approach may have an advantage where the rules

of diagnosis may be easily extracted from existing knowledge.

Processing requirements. The multivariate statistical approach AL
requires a computer with fast number-crunching and large-data base capabi- ).:,..'
lity to perform the processing required to identify minimal sets of
measurements and algorithms for diagnosis. Once this process has been per-
formed, however, diagnosis can be performed with little additional
programming and ordinary computer capabilities. On the other hand, the -..

database of rules can be quite large and processing slow for implemen-
tations of the knowledge-based systems approach.

When backward-chaining recursive procedures are used, very large memory
requirements can result. For example, given a microcomputer with 256KB of
memory, it is possible to do backward chained inferencing with about 300-
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400 rules, and to do forward chained inferencing with about 2000-2500
rules. Of course, with a full scale major implementation, artificial
intelligence researchers have sought out the largest mainframe computers
available.

As a further complication, programming is eased for this type of
processing when LISP or PROLOG languages, or their derivatives, are used.
Programs written in these languages are not mixed easily with programs
written in common data processing languages such as FORTRAN or PASCAL.
Diagnosis, however, does not have to take place in real time; this permits
a two-pass approach to be taken, and standalone microcomputers can be
interfaced to accomplish limited or focussed diagnosis.

Data collection. As pointed out above, the multivariate statistical .-
approach requires extensive collection and analysis of performance data,
while the knowledge-based systems approach requires extensive extraction of
subject-matter-expert knowledge. Either task can be formidable; however,
for major levels of diagnosis, it is currently believed that the knowledge-
based systems approach can lead to a working product more quickly.

Allocation of intelligent functions. Diagnosis does not have to be
automated completely to satisfy all requirements. In fact, in the short
term, it is unlikely that computer diagnosis will completely replace human
diagnostic functions. Certainly it is desirable in all cases to have the
human diagnostician participate for a long period of development to refine
the system to achieve human acceptance.

For some applications it is necessary only to augment human diagnosis--
to ensure that performance does not go unobserved, and suggest a diagnosis.
In some cases one may wish only to provide the human diagnostician with
sensitive discriminating information. There is, then, a potential alloca-
tion of diagnostic functions between human and computer, and, probably not
all applications will require fully automated diagnosis.

Comprehensive identificationn f errors. Both of the automated
approaches which have been discussed require the identification of all
performance anomalies of interest as a starting point. It is relatively
easy to identify common student errors, because these are listed easily by
experienced instructors. It may be difficult, however, to make a compre-
hensive list of all performance anomalies which could be encountered by a
performance diagnosis system.

There are no error taxonomies readily available. Fault analysis for
automatic systems often involves definition of a fault tree; for example,
each significant failure is identified, then the events leading to these
failures are identified, and then the events which could lead to these
events are identified, and so forth. Clearly, this is a major undertaking
for any but the simplest systems. Consequently, a fundamental and
unresolved problem is the identification of a comprehensive taxonomy of
performance anomalies; given this, there are techniques which offer some
promise for automated or semi-automated performance diagnosis.
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'S." SUMMARY

Two methods have been described; each has potential for automated
performance diagnosis. Multivariate discriminant analyses may be the
method of choice where differences are obscure and experts are not able to
articulate a basis for diagnosis. The knowledge-based systems approach may
be the method to use where an emulation of expert inferences is desired.
The two approaches are not mutually exclusive; they could be used in a
complementary way, and conceivably a diagnostic system could be designed . -

using both. In any case, there is emerging technology upon which a system
for automated diagnoses of human performance could be implemented. As a
consequence, future performance measurement systems should move to a new
and higher level of meaning.
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4. SECTION 8.

DISCUSSION

This section will present some of the complexities of real-world
measurement to provide information which should be considered when applying
the measurement methods covered in the foregoing sections. Measurement in
the context of real flight missions must consider specific tasks, perfor-LA
mance objectives, tradeoffs, and purposes for measurement; these are
discussed in the initial paragraphs of this section. Then, measurement
considerations imposed by different end purposes (system design, personnel
selection, individual training, operational training, and behavioral
research) are amplified. Real-time performance measurement for training
systems is being automated; a discussion also is provided to reveal some of

the issues associated with this trend.

FLIGHT PERFORMANCE MEASUREMENT DOMAIN

Consider Figure 9; it lists flight phases (global tasks), performance
0 1. objectives and purposes of measurement. Within each phase there are tasks

such as turn, climb, descend, accelerate, and decelerate relative to the
airmass, another aircraft, the terrain or objects on the ground or water. -

Aircrew knowledge, cognitive, perceptual and motor abilities are embedded
in the performance of these tasks, are inferred by task performance
measures, and cannot be measured directly.

When performing flight tasks, pilots have performance objectives, which
are classified as survival, effictiveness, efficiency and regulatory in
Figure 9, but there are overlaps within these categories. Survival is
paramount; without it there is no effectiveness, unless much more than the
survival of the individual aircraft is at stake. Without effectiveness,
efficiency is meaningless . Regulations take precedence over effectiveness
and efficiency in peacetime, but in wartime the relative importance of many
objectives change. It might be important to learn how these performance
objectives might change in war.

The flight situation at every moment will affect the way experienced
pilots trade-off which objectives are optimized, and how much error is
acceptable, given the existing workload, current and projected states of
the aircraft. For example, during take-of f s, climbs, descents, approaches,
landings, instruments and emergency procedures, one can measure error from
the required profile in each degree-of-freedom (such as pitch, roll,
heading, altitude and so forth) and profile dimension, as illustrated
earlier in this report. But pilots control these dimensions simultaneously

* and make trade-of fs; also, error from any dimension, or accuracy, is only
one of several potential measures of effectiveness and efficiency.

Moreover, as one addresses flight tasks and missions of operational
complexity, the performance objectives of the pilot can change. During
UPT, pilots are learning the basics, and are expected to fly each maneuver
as precisely as possible at all times. Af ter training, pilots are expected
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to apply judgment, and overattention to accuracy of flight at the wrong
times might compromise safety and mission performance.

Pilots learn when to attend to each task, and the degree of precision
needed for each flight situation. For example, in heavy turbulence, speed

and altitude may be permitted to vary more than usual to prevent airframe " --

damage. When navigating, a pilot who is slightly off course may not return
to the course centerline, but may make a slight heading change to cross J,
near the next checkpoint in order to optimize fuel consumption; a measure
of error from the course centerline would not provide adequate performance

information. Perfect profiles might mean that pilots are spending too much
time looking in the cockpit, and not enough time outside.

Flight Performance Measurement
Phases Objectives Tradeoff Purposes

Flight Planning Survival: Relative
Preflight/Start Disorientation Weights &

Taxi/Takeoff Loss of Control Priorities
Departure Damage/Crash of E ch
Cruise/Navigate Threats CIEI

Formation
Aerobatics Ef fact I veness.:RESEARCH
Basic Fighter Flight Plan Time

Maneuvers Accuracy DSG

Air-to-Air Combat Stability FIGURES
Air-to-Ground Combat Energy Level of SELECTION
Electronic Warfare Maximum Performance MERIT
Approach/Landing Situation Awareness TRAINING
Instrument Flight Tactics/Future

Subsystem Operation Position OPERATIONS
Emergency Procedures Weapons Delivery

Command, Control and
Communications Efficiency:

Speed of Response '.

Energy Consumption .

Workload
Crew Comfort

Regulatory:

Noise 'L
Air Regulations
Hazard to Civilians

Rules of Engagement

.

Figure 9. Flight Performance Measurement Domain.
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As training progresses from UPT to operational readiness, pilots become
% more skilled, and onboard systems increase in sophistication, changing the

nature of the job. Performance objectives change and measures should -
reflect these changes; it may no longer be appropriate to measure heading,
height and airspeed the same way. Tactics, energy management, coordination

l- with other aircraft and ground forces, and decision making become important
tasks.

There is a mapping of measures from flight tasks through performance .
objectives. If it were constructed, this map would show the relative
priorities and weights of each measure on a combined figure of merit for
each task. One would expect these priorities and weights to change with
pilot experience, the nature of the flight environment, and the mission
requirements.

For each purpose of measurement in Figure 9, criteria for acceptable
and unacceptable performance are needed to evaluate performance for each
task. Information for research, system design, personnel selection, and
training may require slightly different measures and criteria than for
operations, but criteria should be derived from operations because the -
ultimate goal of the aircrew is to perform its operational purpose in both
peace and war.

For some purposes, such as research on basic human perceptual, motor
and cognitive abilities, or training diagnosis, a combined figure of merit
may be too insensitive to provide needed information; exclusive use of a
single figure of merit is not recommended, but the measurement user should
know the relationship between individual measures, overall figures of merit
and operational criteria to assess the importance of performance changes
to real world operations.

Commonly stated criteria (such as hold heading, altitude and airspeed
within certain limits) for aircrew task performance are general performance
boundaries. They have emerged to guide instructors and flight inspectors
who observe much more of a pilot's behavior than these criteria suggest;
taken alone, such criteria may not provide sufficient information. They

, tend to obscure the relationships which are illustrated in Figure 9, and
ignore interactions between dimensions of performance (and of measurement), --

all of which are assessed by the human instructor, whose judgments are
based on knowledge and years of experience which is difficult to extract
and quantify.

Where there are no fixed profiles, such as during air-to-air combat,
only terminal parts of the task, such as gun tracking or outcome, usually
are scored. During introductory training, the Fighter Weapons School at

*.O Nellis AFB creates set-ups in such a way that a tracking solution can be .
achieved ONLY if the pilot performs properly. The ACM ranges measure

Severything that happens, and makes these data available for replay, but
"[ only kills are scored.

During ground attack weapons delivery training, it is common to score
only the weapons impact. Terminal measures do not provide information on
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how the pilot maneuvered to achieve the kill or drop the bomb. Diagnostic
information is missing, although an error analysis of the miss distance and
direction can provide some guidance for the pilot who remembers the exact

sight picture and aircraft states at the time of release. The accuracy of
perception and memory for precise details during such extreme workload
conditions as the final seconds of air-to-ground weapon delivery can be
questioned.

Again, the judgments of expert observers are used to provide necessary
guidance for pilots, and assess performance in current practice; the basis
for those judgments has to be captured to develop meaningful measures and
criteria.

What, then, are our measures telling us about the knowledge, cognitive,
perceptual and motor abilities which cannot be directly measured? What are
measures derived from current practice and existing criteria telling us
about behavior, if they may not reflect the real behavior of experts? Is
zero error always the best? Most measurement in research and training seems
to make this assumption. Are we measuring properly for system design, per-
sonnel selection and training, and operational readiness assessment? The

current state-of-measurement for each of these purposes is discussed next.

SOME CURRENT MEASUREMENT ISSUES

A overview of performance measurement issues in (a) system design
studies, (b) personnel selection, (c) individual training, (d) operational ..
training, and (e) behavioral research follows:

System Design Studies. The purpose of measurement during system design
is to provide information which will predict the capabilities of aircrew

members in aircraft systems, and to provide this information in a way that
relates to system design questions early enough in the design cycle to have
an influence on it. Devices used to study system design issues include
static mockups, full scale mission simulators, and sometimes aircraft.
Because system design alternatives may cover a range of configurations and 41
capabilities, the most informative data would be validated performance'
models of the human operator which could be used with aircraft and weapon
system models to predict performance in computer simulations.

The human aspects of aircraft and weapon system designs usually are
concerned with (a) operator station design and use throughout the full
range of the environment in which the system will have to perform, (b) the
precision of control and stability, (c) the level of automation that will .'-

be required to assist human control for precision and safety, (d) operator
workload, cognitive, perceptual and psychomotor functions, (e) reductions

in operator capacity due to physical, environmental, radiation or workload
* stress, (f) operator potential error rates, and (g) personnel and training

requirements. Each of these purposes requires slightly different measures.

Measurement may be derived from manual observational data, automated
instrumentation and measurement systems, and human operator and system
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models. We can measure response time, switch positioning accuracy, and
ability to reach controls and read displays. We know how to model and
measure operator dynamic response characteristics (and operator-system
precision and stability) in some situations (cf. McRuer and Krendal, 1957;
Muckler and Obermayer, 1964; Baron, 1981; McDonnell Douglas, 1981), but not
all of them. There are workload assessment measures and models, but we
have not come to any agreement on valid measures of mental workload or
perceptual capacity, let alone establishing optimum levels for design use.

We know how to measure error from predetermined profiles, but we don'It
necessarily know how to scale performance quality where there may be many
solutions to the problem in changing or emergent environments. Even though
we know how to measure many tasks individually, we do not necessarily know
how to evaluate the importance of each measure to overall performance,
except through the use of empirical data analysis and modeling techiques.

often, system performance measures have to be used to infer correct
- - interpretation of all displays and communications, and these measures will

be affected by the way in which the test scenario is constructed. Since
performance will be a function of what the aircrew is being asked to do,
measures will be related directly to the parameters of the test. Neither

9 the measures that are taken nor the test conditions for measurement are
standardized.

Where safety (both of the system and the environment or population it
might affect) is important, it is of special concern to acquire valid human
error data. In spite of renewed interest in this area by the Nuclear
Regulatory Agency, there is a lack of valid and generalizeable human error
data for system design purposes. Human error rates can be sampled in a
simulator for design purposes, but without knowledge of the error rates in
the real world, the representativeness of the sample can be questioned.

Furthermore, it is unlikely in any system design program that enough
time or resources can be allocated to collect the amount of data needed to
predict operator error rates with confidence, especially for the low
probability but high cost events. And, there are serious issues concerning
what constitutes a test" for such events. What can replace the hours and

7. perhaps years of training and everyday operations that have preceded major
aircraft accidents?

A related issue is: what constitutes a test for aircrew members who
are exposed to extreme heat, g-loading or toxic environments, and how are
performance measures to be related to mission effectiveness criteria? How
much performance degradation is acceptable under what circumstances?

It is clear that aircraft and weapon systems are designed and
delivered, and they work, although many systems require operational test,
evaluation and field changes. They work because of the experience of
designers, analysts, and subject matter experts, who often do not have
adequate performance data, models and criteria. In the absence of data,
design decisions can be wrong, and systems can emerge with less than -

00 optimum demands on the human operator, which can have an adverse affect on
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the training requirements and mission effectiveness. Valid performance
data, models and criteria can reduce these risks.

Personnel Selection. Personnel selection criteria usually are derived
from paper-and-pencil tests, review of academic credentials, interviews and
medical examinations. Paper and pencil tests predict academic performance,
but do not predict job performance very well. There are questions about
basic knowledge, abilities and human performance capacities (as well as
social and attitudinal factors) that must be part of selection tests. All
three military services have extensive programs to improve the ability of
selection tests to predict job performance.

The use of simulators and part-task devices to aid selection decisions
by measuring performance on job-sample tests has been examined (Long and
Varney, 1975; Shipley, 1983; Kozinsky and Pack, 1982). Since job sample
tests have to be designed so that a minimum amount of training is needed,
measures similar to those used early in training should be useful. It is
interesting to note that Shipley (1983) found noticeable differences in the
ability of selectees to handle transitions from one steady state to the
next.

The measures for this purpose require longitudinal validation, and
without operational figures of merit and criteria, the best that can be
done is to validate selection measures against success in training or job
performance batteries. More work in this area is needed.

Individual Training. There has been great improvement in training
performance measurement brought about by Instructional System Development

*- (ISD) efforts throughout the military services. The ISD model requires the
development of specific behavioral objectives for each task to be trained,

" and specification of performance standards. For those tasks in which
specific procedures are to be followed, and for which performance standards
can be specified, measures based on "school solutions" are within the
state-of-the-art.

ISD methods, however, may be insufficient for specifying measures for
tasks which involve extensive maneuvering or are reactive. In current
practice, maneuvering tasks often are judged best by expert observers,
because the decision rules are complex. When attempting to reduce these
rules to printed procedures, "the book" can be wrong, as was found by Knoop
and Welde (1973). An examination of a small sample of ACM engagements in
the Simulator for Air-To-Air Combat by Wooldridge and Obermayer (1982)
found that published rules of thumb for ACM were not followed by pilots who
were judged to be experts. Measurement which is based on rules which are
published as initial training material may not be sufficient.

Operational Training. Aircrew members receive continuation training
and operational "readiness" evaluation. Numeric performance criteria are
applied to a few tasks, such as the annual instrument flight check and the
number of qualifying bombs for ground attack. If one is lucky enough to

* -" get time on an instrumented range, ACM performance is recorded for playback
and kills are scored. But, performance is not measured for many tasks.
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Proficiency is presumed by "square filling" exercises, such as the J
number of instrument approaches, number of low level flight mission, number

* of night landings, number of times one entered the ACM practice areas, and
so forth. These are measures of experience, but they are not performance
measures or criteria. Consequently, there are no current data upon which
to build figures of merit and performance criteria for presently unmeasured
or assessed tasks. Without such criteria, how to we train individuals to
be experts?

In most operational aircrew tasks, individual crew members work as a
team, which reacts to the environment which may be changing and interactive
with them. If the environment changes, the situation may be "emergent,"

* -and have no fixed solution which is best all of the time (as opposed to the
school solution).

Airspace control is an example of a cooperative emergent environment, A
* where the controlled aircraft are working with the system for the safety of

everyone. Military combat, and battle command and control exercises are
examples of uncooperative emergent environments, where flight crews must
react to adversaries as well as coordinate with their own forces.

In military exercises, unit performance is measured usually at the out-
come level, such as the resources used, ordnance expended, number of casual-
ties inflicted or targets destroyed, number of casualties sustained, and
the time to complete the drill. While these data are useful, seldom does
one find measures which can diagnose the cause of a particular outcome in a
way that can prescribe directly what training is needed by individuals to
improve crew performance.

Individual crew members may "drop the ball," but their errors might be
mitigated by another crew member, another flight element, a good forward
air controller, or an error by the adversary. Conversely, an individual
crew member may not perform well because someone else did not do their job
properly. Measures of total crew performance do not necessarily provide
the performance data and feedback for individual crew members. *~ .

Measures of individual and crew performance in emergent situations have
not been well developed, and criteria are lacking. The usual solution, in
systems that are so equipped, is to setup a scenario, record performance
and communications in time history form, then replay the exercise to debrief
the players. Some systems provide real-time scoring of casualties and feed-
back for individual players (e.g. air combat maneuvering ranges), but if the*.
scenario is changed, the outcomes are likely to change. The assessment of
the quality of performance is scenario specific.

Individual and system performance models, which account for all the
U dynamic elements in the scenario that influence individual decisions and

system performance, appear to offer the only solution to performance
measurement and assessment in emergent situations. Without such models,
the effects of individuals on team performance, and extrapolation of team
performance from one situation (scenario) to another would be difficult to
quantify. But, there are many unresolved issues related to the structure,
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content, and fidelity of such models; the design and development of models
and measures for individual and team performance assessment will require
research and empirical testing to determine their validity.

Thus, the measures which are taken in operational situations today
contain very little information on which to assess the maintenance of
skill, insure individual proficiency or the proficiency of units, or expose
the real state of mission readiness. In the few cases where there are
performance criteria, current measurement practice is too imprecise to
provide the kind of data and criteria which are required for improving
system design, and measurement system design for personnel selection and
training beyond current practice.

,.-' .

Behavioral Research. All of the above measurement issues apply to
research and development of human-machine systems, for design, personnel

selection and training--and moreso. More measurement precision is required
for research than for "everyday" training or operations, to search for
previously unknown knowledge, to reduce experimental erroi, and to predict
performance for a variety of purposes.

The more measurement captures relevant human knowledge, abilities,
learning, performance, individual differences, and the varying nature of
dynamic tasks, the less unaccounted for variance will appear in the data.
As the performance data space precision in the experiment is improved, so
will be improved our ability to predict performance in the real world.

As stated before, there are insufficient operational criteria and
figures of merit to adequately support research. Many measures typically
are taken in research studies, but often the relationship between the
research result and real world mission performance is not known. There
have been attempts to relate research performance data to operationally
relevant criteria (Westra, Simon, Collyer and Chambers, 1982; Brictson,
Burger and Wulfeck, 1973; Knoop and Welde, 1973); but, in general, it is
difficult to map performance data from research studies into overall system J-
or mission effectiveness, because these criteria are unknown.

Even when transfer-of-training studies have been permitted, the data .-,.-.

usually show only the "replacement value" (in terms of transfer effects,
training effectiveness or cost effectiveness) of the whole training device
within the existing training curriculum. If the device contains features
that train additional skills, and the curriculum is not adjusted to the
change in training content which is brought about by the new device, a
transfer-of-training study will not show the true value of the device.

Also, current transfer-of-training measures cannot provide information
on the elements or features of instruction that are transferring positively
and negatively. Consequently, use of the transfer effectiveness ratio as
the only metric of training value has been questioned (Rolfe and Caro,
1982). New test and measurement methods are needed; we may have to examine
transfer on a task by task performance measurement basis.

, S. .

The analysis of behavior for each particular research purpose requires .

the development of (a) measures which are sensitive to the performance
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changes that occur, (b) criteria for selecting and combining measures to
develop overall figures of merit, and (c) criteria to relate those
performance changes to operationally relevant factors. Since we lack
detailed measures of "on the job performance" for many tasks, behavioral
research suffers the criterion and measurement validity problems.

* W. DESIGN ISSUES IN AUTOMATED MEASUREMENT SYSTEMS

Automated measurement systems are being specified as an integral part
of the requirements for many new training systems. When designing a real-

*time automated measurement system, several issues emerge. Automated
* measurement systems remove some of the judgment and insights of human

instructors from the measurement role. As discussed earlier, some of the
intelligence of human instructors and examiners has to be defined well
enough to make the systems work. There are six areas of challenge:

Knowledge of Tasks.- The measurement system must know what tasks are to
be performed; this is easy for fixed profiles or procedures, but it can
require pattern recognition and probability assessment if the task changes
as a function of the simulated environment, or there is no exact profile or
procedure.

Segmentation. The system must recognize the start of a task and the
end of it; the measure segmentation rules discussed in Section 5 represent
initial solutions only; all aircrew tasks do not start or end with events%
which are recognized easily.- Some tasks are performed in parallel. Often,.9,
there is a flow from one task to the next, where the change from any task
to the next may be subject to the way the aircrew chooses to do the job, or
may be subject to a variety of environmental events or factors which are
external to the specific task at the moment. Expert human observers
usually take all of these factors into account; automated systems will do
so only if they are programmed to do so, and some tasks, such as monitoring
and communications, may not be measured directly.

Performance Diagnosis. Performance diagnosis requires identification
of all possible errors and construction of measures for many of them; this
would involve much more analysis than is common in most ISD efforts, and
the diagnosis of prime causes is non-trivial. The diagnosis difficulty
lies at a level below the obvious blunder, where minor deviations from
expected performance compound into an error. Here, measurement must be
able to spot patterns over time, assess probabilities and determine
probable causes. Examination of time histories can lead to after the fact 9

diagnosis, but real or near-real time diagnosis could require significant '.
processing resources, and extreme care must be taken to capture only errors
and not issue false alarms.

If the purpose of diagnosis is to guide training, decision algorithms
may require examination of more than the current exercise. Information on
past student performance, the rate of learning and future exposure to the

Ak same training event might be needed to determine the best course of action.
% If the student knew what to do, perhaps he or she just needed practice; if

the opportunity for more practice will be presented in the future, no
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action may be necessary. If no further exposure to the task is provided,
V additional practice may be required. If the student did not know what to

do, either academic or simulator remediation may be required. These are
training strategy Issues, but they impact on performance measurement system
design for real or near-real time application.

Summarized performance metrics are not likely to provide diagnostic
information. To develop the required information, all factors which affect
task performance will have to be known. Computation, memory and storage
resources will have to be dedicated for this purpose. The architecture for
storage, retrieval and processing of diagnostic data may be different from
that of the basic simulation; LISP, PROLOG or relational database methods
may be the best way to organize and access these data.

Of ten, there are limited resources that can be provided for measurement
purposes, so the value of the information has to be traded-off against the
cost to provide it. There are no general methods to determine the training
value of various levels of diagnostic information. Guidelines for the
presentation of required information for instructional use and diagnosis
for real or near-real time measurement systems in simulators have never
been studied or formally developed. 4

Additional Measures. System performance measures may not be sufficient
for diagnosis or assessment purposes. Where learning has been measured for
basic psychomotor and cognitive tasks (such as video games), there have
been enormous individual differences in both performance level and learning
rate at every stage.- Contrary to popular belief, performance on relatively
simple psychomotor tasks does not asymptote as early as many researchers
and training specialists presume (Kennedy and Bittner, 1977). People get
better and better over time, and they do so at different skill acquisition
rates; more than a few slow learners eventually perform tasks better than
fast learners. If we measure performance and predict success before the
rate of skill acquisition is stabilized, our predictions may be of
questionable value; measures related to learning may be needed.

User Interface. Data formats have to be developed to communicate
measurement information to each user in their language (an RMS error scoree
may not be understood by the user). Even researchers can be overwhelmed by
scores of numbers. Moreover, if simple performance measures are not
sufficient for assessment or diagnosis, methods to provide users with the
meaning of more complex data and information structures will be needed.
Dedicated analysis efforts are needed to find the best way to communicate
measurement information to the user.

Validity of Measures. As said earlier, system performance measures are
used to infer aowledge and abilities. Performance measures taken early in

U training may or may not predict end of course performance, and they may not S
capture all of the behavior that is sensed by an expert observer. Measures
of performance are indirect for many purposes; indirect measures should be
validated.

There have been isolated studies of measurement validity for aircrew
tasks (cf. Connelly, Schuler and Knoop, 1969; Vreuls and Obermayer, 1971;
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Knoop and Welde, 1973; Brictson, Burger and Wulfeck, 1973; Waag, Eddowes,
Fuller and Fuller, 1975; Vreuls, Wooldridge, Obermayer,.Johnson, Norman and
Goldstein, 1976; Wooldridge, Kelly, Obermayer, Vreuls, Nelson and Norman,
1982). These studies show it is possible to construct valid measurement.
Generally, the measure sets are more extensive and precise than grading
criteria as it is commonly expressed by instructor grading forms, but high
correlations with instructor judgments have been reported.

Several of these studies have found that all measures of a task cannot
be weighted equally. Some measures carry heavier weights than others; if a
multivariate analysis cannot be used to establish weighting coefficients,
the next best procedure is to use norms to scale all measures relative to
their distributions, then add the z-scores to derive overall performance
metrics. One study of ACM performance found a multiple discriminant model
which accounted for variance and could predict group membership (and be
related to outcome), but would be difficult for an instructor to interpret,
except as an index of "how goes the engagement."

Another finding was that the measures and weights which best controlled

automated training were not predicted by analytical methods; when they were

derived by empirical data analysis, a 40% reduction in time to train to the
same performance criteria was found on subsequent tests. The measure set
which produced superior automated training contained control input and
other measures which tended to reflect technique--behavior that an
instructor would sense, but for which there are no numeric criteria.

In their excellent discussion, Waag and Knoop (1977) indicated several
kinds of validity tests which are needed to develop measures for training.
Content validity is established first, phen there are three empirical tests
of increasing stringency: One test examines the ability of measures to
discriminate between opposite ends of the skill continuum. A second test
examines the functional relationships with concurrent measures, such as --.
instructor ratings. A third test examines the functional relationships
between performance measures and variables such as time in training. A
fourth test, which was not discussed, might test the relationships between
performance, measures of learning, and performance on the job. V

Waag and Knoop (1977) noted that the problem of validation, already
complicated by the lack of a single, necessary and sufficient test, is made
more difficult by the a lack of standardization of validation criteria for
any one type of test. Suffice it to say that if automated measurement
systems are to be used for training, the measures must provide information
which is proper and shown to be valid for that purpose.

In summary, modern technology provides a basis for improved measurement
information. There is little doubt that machines can measure performance
more accurately than human observers in many situations, but real-time
automated measurement systems may have to capture some elements of behavior 4' ,
that presently are being observed and assessed by expert observers without
quantitative criteria. Improved front-end analysis techniques are needed.
Also, the costs of analysis and automated measurement systems may or may
not be justified. There are no known guidelines for determining when and
where automated measurement might be of value, and where it might not.
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SECTION 9.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Each purpose of measurement requires measures that provide information
which often is specific to that use. There are some unresolved issues in
the mechanics of measurement and degree of intelligence needed for real- W
time automated performance measurement systems. Methods and guidelines for
cost-benefit analysis of automated measurement systems for for training are

'V needed.

Criteria for selecting appropriate measures and combining them for
overall assessment are lacking. Human-system modeling techniques and
empirical measurement development methods to derive, develop and validate "

measures for many tasks are available, but required data collection efforts
have not been funded to the extent necessary for development of criteria
and validated measures for system design, personnel selection and training,
and operational performance assessment. In general, operational figures of
merit and criteria are undeveloped and unknown for many tasks.

In personnel selection, measures of job performance by qualified
aircrews would help to quantify the predictive validity of selection tests
and measures. In training, quantitative measures of how various flight
skills are acquired would assist training system research and development,
as well as provide information of potential benefit for the training system
user. Criteria for the performance of experts is lacking; if developed,
they would aid training of expert performance. Measures of individual

* contributions to crew performance are needed to provide proper feedback
to individual team members. Valid measures of performance in emergent
environments are needed. X

In spite of some of these difficulties, progress has been made on real-
time performance measurement systems. The measure segmentation methods
which are suggested in this report have the ability to pin-point the start
and stop of maneuvering tasks with here-to-fore unrealized accuracy. It is
now possible to measure transition performance in ways that have not been
possible in the past. Transforms which reflect the performance strategies
and objectives used by experienced pilots have been suggested as potential
alternatives to measuring only error from a known profile.

Certainly, the suggested methods can be used for flight profiles which
are well defined, and where performance standards are explicit, as in much
of undergraduate pilot and initial crew training in flight simulators.
There are issues of combining measures into overall performance metrics

d which have to be resolved, but there are many acceptable methods for doing
this, including the use of norms.- There are issues of the presentation of
measurement information to the user which have to be addressed as well, but

* - for many standard measures, the user interface problem can be solved by
attention to the issue in system design and development.
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Issues such as the predictive validity of measures during training and
capturing more of the knowledge and experience of instructors will require p

more research, and possible use of different data structures, such as those
provided by the methods of artificial intelligence. Until we are sure that --

real-time measurement systems can capture more of the assessment capability
of expert observers than now appears to be the case, automated measurement
systems will have to be advisory in nature; instructors will have to review
the re ilts and have the capability to override any automated score.

For certain training and research purposes, the use of observational
data collection should not be forgotten in the pursuit of automation.
Expert and trained observers have the capability to sense many things that
automated systems cannot, such as communications content, visual lookout -

doctrine, situation awareness, monitoring, and subtle cues that indicate a
crew member is anticipating a future event. Observers have limitations,
however, so research on the best use of observers and observational data
should continue.

RECOMMENDATIONS

It is recommended that:

1. Measurement should be segmented using the methods and guidelines which
are suggested. This will require development of a short-term memory window
of relevant system states, appropriate regions of the phase plane, and
flags which are set by logic to mark the time and occurrence of specific
conditions.

2. Measures of transitions from one steady-state to the next should be
* used as well as steady-state measures which have dominated past performance
* measure sets. Transitions contain valuable performance information which

is otherwise lost.

3. Transforms which measure pilot performance objectives and strategies
should be used wherever possible. Some of expert pilot performance is not
captured by measures of error from course centerlines, desired altitudes,
airspeeds or headings.

4. Transforms which capture control technique in the frequency domain
should be used. Such measures contribute to the training performance eval-
uation, and can provide data for performance models.

5. Human-system performance models should be improved for system design
and development efforts. Models which reflect human error rates and
performance degradation due to adverse environments would be especially

* useful. Such models also would be useful for the evaluation of alternative
tactics and mission effectiveness studies.
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6. Research should be conducted on methods to evaluate the performance of
experts on complex, mission oriented tasks. Figures of merit which reflect
operational performance and criteria are needed for system design and
training. Methods to extract complex rules which are used by expert
evaluators are needed to quantify the basis for their judgments, and
develop knowledge representation techniques which can be used for real-time
performance diagnosis.

7. Research should be undertaken to identify and develop methods for the
diagnosis of performance by real-time measurement systems.

8. Research should be conducted on measures of learning and individual -

differences to be used in conjunction with performance measures for the
prediction of end-of-course performance. Valid methods to identify
potential failures early in training could save substantial training costs,
and improved measures which are related to learning and training time might
improve training efficiency.

9. The allocation of measurement function between automated systems and
human observers should be studied. Cost-effectiveness and training benefit S
studies are need to learn cost-benefit functions for various levels of
automated measurement systems versus manual observational measurement.

10. Future efforts to develop guidelines for performance measurement should
analyze both user information requirements and tasks, since measurement is
information for a specific purpose.

11. The instructor or expert evaluator should retain the prime performance
assessment role until automated performance measurement systems have been
demonstrated to be appropriate and valid for this purpose.

12. Research on observational data collection methods should be continued
for those tasks and measurement environments in which automated measurement
is not possible.
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APPENDIX A

PERFORMANCE MEASUREMENT OF AEROBATIC AND BASIC FIGHTER MANEUVERS

Aerobatic Maneuvers

Automated measurement of pilot/system performance during aerobatic
maneuvers presents a complex challenge, but it is by no means an impossible
task. During most such maneuvers, the desired position of the aircraft can
be defined at all times according to such dimensions as heading, altitude,
pitch, roll, and g-forces and by desired changes in these dimensions over
time.

To simplify measurement, it is possible to divide each maneuver into
discrete segments during which a defined sequence of aircraft states is
expected. Deficiencies in pilot performance are seen as departures from
the expected profile during each segment according to the set of measures
being used.

Some of these segments are common to more than one maneuver and the
measurement logic may, therefore, be transferred intact between maneuvers.
Other segments are specific to a single maneuver.

It is also important to note that the measurement methodology may vary
according to the characteristics of the airframe being used, the charac-
teristics of the measurement system, and the reasons that the measurement
is being done. Different airframes, for example, will have different
recommended maneuver entry speeds and power settings. Differences between
airframes, in some cases, will even dictate major differences in the way
that a given maneuver is done. For example, the ability of the aircraft to

2. sustain powered, inverted flight determines whether segments requiring zero
4 or negative g-loading may be included in the maneuver technique.

The characteristics of the measurement system may partially determine
* - the measurement methodology. For example, there are several ways to deter-

mine, during a loop, when the aircraft nose passes the vertical position.
The measurement capabilities of the system will be crucial in deciding 4

whether this point is determined by a measure of aircraft pitch, heading,
* foreward velocity, or some other measure.

!4
The reason that measurement is being taken may also impact the method-

ology to be used. One example of this is discussed under the section
describing the Cuban eight.

The following sections describe how pilot performance might be measured
during performance of a number of standard aerobatic maneuvers.

A-1
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THE LOOP

Probably the simplest aerobatic maneuver is the loop. A loop is essen- -
tially a 360 degree turn about the lateral axis of the aircraft in a ver-
tical plane.

The proposed measurement methodology involves dividing the maneuver
into six discrete segments, each having well defined start and stop logics.
The initial segment begins when the instructor pilot signals the pilot to
start the maneuver. The measurement system is initialized at this time. "-
During the segment, the pilot is increasing or decreasing the aircraft
speed to the prescribed maneuver entry speed for the specific aircraft and
maneuver. Measurement of the segment ends when the aircraft has reached
the entry speed. During this segment, aircraft speed and heading are the
primary measurement variables.

The second segment begins when the aircraft has reached the maneuver
entry speed and the pilot sets the throttle to the recommended entry power ..
setting. The start logic, then, is of the form:

Airspeed - ASl +/- Y knots AND Power - P1 +/- X units.

The segment ends when the aircraft pitch reaches vertical. This may be
determined by a measurement of pitch angle or by the reversal of heading
as:

Heading 2 Heading 1 + 180 degrees + /- X degrees

depending on the parameters of the measurement system in use. During this
segment, aircraft heading, pitch, airspeed, roll and power are of primary

interest.

The third segment starts with the termination of segment 2 and ter-
minates when pitch reaches 180 degrees (aircraft inverted). The variables
of primary interest are the heading, pitch, roll and airspeed.

The fourth segment starts at the termination of segment 3 and ends
when the pitch passes -90 degrees, either as determined by measurement of
pitch angle or by the heading reversal. The measurement variable of
p r im a ry im p o r t a n c e a r e h e a d i n g , p i t c h , r o l l a n d a i r s p e e d . .2

The fifth segment starts at the termination of segment 4 and ends with
the return of the aircraft to level flight as determined by the pitch
reaching 0 +/- X degrees. Variables of importance in this segment are
heading, pitch, roll, airspeed and G's.

The sixth segment involves stabilization of the aircraft in level
flight, it begins with the termination of segment five and ends when the

instructor pilot terminates the exercise. Primary measurement variables
are heading, roll, pitch, and airspeed.
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THE IMMELMAN

The Ielman is essentially a 180 degree turn in a vertical plane.
There are two accepted ways of performing the Immelman, depending on the
capability of the aircraft to sustain inverted flight. The maneuver and
measurement methodology described here are for an aircraft that is capable
of inverted flight. The maneuver is divided into five segments.

Like the ioop, segment 1 of the immelman consists of obtaining the
recommended maneuver entry speed. It starts when the instructor pilot ini-
tializes the measurement system and starts the exercise. The segment ter-
inates when the aircraft has reached the desired entry speed +/- X knots.
Important variables are heading and airspeed.

The second segment of the immelman is also identical to the second .,

segment of the loop. It begins when airspeed and power reach their recomf-
mended entry values and terminates when pitch reaches 90 degrees. Important
variables are power, airspeed, roll, heading and pitch.

The third segment is similar, but not identical to that of the loop.
*It begins with the termination of segment two and ends when the aircraft .

pitch reaches the recommended value, slightly less than 180 degrees.
Important variables for measurement are pitch, roll, heading and airspeed.

*The fourth segment involves the roll from inverted to normal flight.
It begins with the termination of segment three and ends when the aircraft
has rolled upright to a bank angle of zero degrees +/- X degrees. Important
variables are pitch, heading, roll angle and airspeed.

The fifth segment involves the stabilization of the aircraft in level
flight and is, therefore, similar in many respects th the sixth segment of
the loop. It begins with the termination of segment four and ends when the
instructor pilot terminates the maneuver. Variables for measurement
include pitch, heading, roll, airspeed and power.

THE CHANDELLE

The chandelle is a&maximum performance climbing 180 degree turn during
which the aircraft's kinetic energy is gradually reduced with recovery at
near stall speed.

The maneuver is divided into four discrete measurement segments. -. '

Segment one is the maneuver entry. It begins when the instructor pilot
triggers the measurement system to begin measurement of this maneuver and
terminates when the airspeed reaches the recommended speed for this
maneuver. This segment is identical to the first segment of the loop and
immelman. L

Segment two begins when the airspeed reaches the recommended entry
airspeed +/- X knots AND the aircraft pitch angle is 0 degrees. It ter-
minates when the heading has changed 90 degrees. During this segment,
important measurement variables are heading, pitch, roll angle, sideslip, .

and airspeed.

A-3



The third segment begins with the termination of segment two and ends
whenth:e heading reaches 180 degrees beyond the entry heading or the bank

headngpitch, roll angle, sideslip and airspeed.

Tefourth segment is the stabilization of the aircraft in level
fliht.It begins when the pitch reaches zero degrees +/- X degrees and it

terminates when the instructor pilot terminates the maneuver. It is
therefore essentially the same as the final measurement segment of the
other maneuvers described in this section.

THE CUBAN EIGHT

The Cuban eight appears to be a very complex maneuver, however the per-
* formance measurement has much in common with the other maneuvers performed

in the vertical plane, the loop and the immelman. In fact, six of the ten
segments in the Cuban eight are common to the other maneuvers.

The first segment is used to bring the aircraft to the recommended
maneuver entry speed. This segment is identical to those of the other
maneuvers and is initiated by the instructor pilot. It terminates when the
airspeed reaches the recommended entry speed +/- X knots.

The second segment is identical to that of the loop and the immelman.
It begins when the power is at the recommended setting and the aircraft is
at the recommended entry speed. It terminates when the pitch of the
aircraft reaches 90 degrees (by whatever means this is determined.)
Airspeed, power, pitch, roll and heading are important variables during
this segment.

Measurement of the third segment is also identical to that for the loop
and similar to that for the immelman. It begins with' the termination of
segment two and ends when the pitch reaches -180 degrees. Airspeed, pitch, k"2
roll and heading are important measurement variables during this segment.

The fourth segment begins with the end 6f the third segment and ends as%
the aircraft completes a 180 degree roll to return to a bank angle of zero
degrees +/- X degrees. Important variables for measurement are pitch, roll
and heading.

The diving segment 5 involves preparation for the pullup into the
second loop of the Cuban eight. It begins with the end of segment 4 and
ends as the pitch angle is increased through zero degrees. Pitch, roll,
heading and airspeed are all important measurement variables.

After segment 5, the aircraft begins the second loop of the Cuban
eight. This is a mirror image of the first loop and the measurement
segments are identical except, of course, the aircraft headings are changed

by 180 degrees. %

The final segment, common to all of the maneuvers, involves the stabi-
lization in normal flight. It begins after the second loop is completed
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and the pitch angle reaches zero degrees +-X degrees and ends when the
instructor terminates the maneuver.

More detailed measurement of this maneuver may be needed, depending on
the purpose of measurement. For example, it may be desired to measure the
symmetry of the maneuver by measuring the altitudes at the top and bottom
of each ioop and the lengths of the various segments. This may provide a
more difficult technical challenge for automated measurement.

THE LAZY EIGHT

The lazy eight maneuver is, essentially, a precision S-turn with care-
f ully def ined climbing and diving segments.- Except f or the entry and exit,
the maneuver shares no common segments with any of the other maneuvers
described in this section.

The first segment is initiated by the instructor pilot and terminates
* when the aircraft has reached the recommended maneuver entry speed +/- X

knots. During this segment, measurement of heading, pitch and airspeed are
important.

The second segment begins when the entry airspeed has been achieved and
the pitch increases through zero degrees. The segment terminates when the
heading has changed by 45 degrees. during this segment, the bank angle and

*pitch are constantly increasing. Important variables are pitch, bank,
heading and airspeed, and various transforms of these across time.

The third segment starts with the end of the second and terminates
when the heading has changed a total of 90 degrees. During this segment,
the bank is constantly increasing but the pitch is constantly decreasing.
Pitch should be zero degrees and bank at its steepest point at the ter-
mination of this segment. Important measurement variables are pitch,

* bank, heading and airspeed, and their transforms.

The fourth segment begins with the conclusion of the third and ter- A
inates when the heading has changed a total of 135 degrees. During this
segment, the pitch and bank angle are constantly decreasing. Important

* variables, again, are pitch, bank, heading and airspeed, and their trans-
forms.

The fifth segment begins with the end of the fourth segment and ter- A
inates when the heading has changed by a total of 180 degrees or whan the

bank angle reaches zero degrees. During the segment, bank is gradually
decreasing and pitch is increasing toward zero. Ideally, at the conclusion IE
of the segment, bank and pitch are both zero, heading has changed by 180
degrees and the airspeed is at the recommended entry speed. This segment
completes the first half of the S-turn. Variables to be measured include
pitch, bank, heading and airspeed.

The next four segments (6, 7, 8 and 9) are mirror images of the pre-
vious four as the aircraft completes a 180 degree turning maneuver in the
opposite direction. Measurement is, therefore, identical.
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Duiring segment 10, teaircraft has completed h aevrun eoestabilized in normal flight.

Like the Cuban eight, it may be desired to increase the complexity of
measurement in the lazy eight to test, for example, if the various parts of
the maneuver are symmetrical in terms of altitude gain and loss, maximum
bank and pitch angle and minimum and maximum airspeeds.

Basic Fighter MananeuversLAI

Basic fighter maneuvers (BFM) are practiced during training to famil- '

iarize the pilot with the kinds of maneuvers required during air-to-air
combat. The purpose of all of the BFH maneuvers is to improve one'Is pos i-
tion with respect to an adversary. These maneuvers can be divided into two L
main functional categories, offensive and defensive maneuvers.

The purpose of the offensive maneuvers is to bring the aircraft into
the opponent's "cone of vulnerability," the position from which a weapon .

can successfully be launched. The purpose of defensive BFM maneuvers, on
the other hand, is to move one's own cone of vulnerability away from the
adversary.

Performance measurement of BFM must account for two different dimen-
sions of performance: (1) the mechanical quality with which the pilot
completes the maneuvers, and (2) the cognitive aspects of choosing the
proper maneuver, timing it properly, and performing it according to the
optimum parameters of speed, angle-of-attack, g-loading, heading and alti-
tude change for the specific situation. These two dimensions should also
be strongly related to the ultimate performance criterion: Did the maneuver
achieve its purpose?

Most of the performance measurement techniques described in this text
have involved identifying or developing a performance profile, describing
the ideal path through space the aircraft should take and the control
inputs required to keep the aircraft on that ideal profile. The perfor-
mance of the pilot, according to a number of measured parameters, is then
compared to that ideal profile in order to provide a score of performance.

During BFM, it- is difficult to provide such ideal profiles. A Basic
Fighter Maneuver (such as a high yo-yo) is not a single, strictly defined

.- V maneuver, but rather a large subset of similar, but not identical,
maneuvers which serve the same general purpose but may be very dif ferent in
terms of airspeed, altitude gain, g-loading, pitch rate, roll rate and
timing of performance. The optimum values of these parameters are deter-
mined by the relative positions of the two aircraft and the intentions of
the pilot.

Baus~te BFM involves no "standardized" maneuvers and the parameters of
a mneuerdepend on the positional relationship between two aircraft,

A-6



there can be no firmly established maneuver profiles. For this reason,
meaningful automated measurement of the pilot's mechanical aircraft
handling performance according to an assumed optimal set of parameters is
difficult and does not account for large amounts of performance variance.

In fact, one measurement model involving specific mechanical control
measures which proved rather effective for measurement of performance
during free air combat engagements had virtually no utility for measurement
during 1PM maneuvers (Kelly, Wooldridge, Hennessy, Vreuls, Barnebey, Cotton
and Reed, 1979.) Performance measurement of specific aircraft parameters
during 1PM, therefore, should concentrate on a tolerance band approach
simply to assure that the important parameters such as g-loading, angle of
attack and airspeed remain within accepted bounds during the maneuver.

This cocuinmay ntapply, however, tfure"intelligent" perfor-
mance measurement systems which might model an ideal pilot's thought pro-
cess and, for a given situation of aircraft position and energy, determine
the ideal profile and then contrast the pilot's performance to that ideal. 7>.
Such an artificial intelligence capability does not yet exist, though
numerous "iron pilot" programs are in operation. None of these claim to
provide an accurate model of an ideal pilot's tactical planning and
maneuvering.

Measurement methods which concentrate on the outcomes, rather than
techniques, of BFM maneuvers have been more effective (Moore, Madison,
Sepp, Stracener and Coward, 1979; Simpson and Oberle,'1977; Wooldridge,
Kelly, Obermayer, Vreuls, Nelson and Norman, 1982.) Measurements of the
quickness and precision with which the pilot can improve his situation in
terms of relative aircraft position measures probably provide the most

* ~effective single approach to performance measurement of 1PM maneuvers. ~ *,

The relevant measures upon which to base such a methodology are the
aspect angle, line of sight angle, range, and closure rate between
aircraft, as well as the energy states of the aircraft.

The aspect angle for Ai rcraf t A is def ined as the angular distance bet-
ween the longitudinal axis of Aircraft B and the line of sight between
Aircraft A and Aircraft B.- It can be any number between 0 degrees and 180
degrees. With zero degree aspect angle, the pilot is looking directly up
his adversary's tailpipe and with 180 degrees aspect he is looking at his
adversary's nose.

The line of sight angle for Aircraft A is defined as the angular
distance between the longitudinal axis of Aircraft A and the line of sight
between aircraft A and Aircraft B. This can be any number between 0
degrees and 180 degrees. With a zero degree line of sight angle, the

* pilots adversary is directly ahead at the 12 o'clock position and with a
180 degree line of sight, the adversary is directly behind at the six .. ~
O'clock position.

Range is simply the linear distance between Aircraft A and Aircraft B.
Closure rate is the rate of change (e.g., feet per second) in the range.
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Energy level is the total kinetic and potential energy of an aircraft due
to the combination of airspeed and altitude.

Calculation of the aspect angle, line of sight, range, closure, and
energy states of the two aircraft, of course, requires the measurement and
transformation of more basic position data for each aircraft. This includes
the instantaneous position of each aircraft in latitude, longitude and
altitude as well as the heading, roll and pitch angles.

The following sections describe a sample of BFM maneuvers and some can-
didate measurement methods for them:.-.

-4 HARD TURN

The hard turn is used to quickly rotate one's cone of vulnerability
away from an attacker who has achieved a position of advantage and is an
immediate threat. The intensity of the turn is determined by the position
of the adversary; the tightness of the turn may be changed after the turn
is initiated in response to the opponent's moves. The entry to the hard " .
turn is usually at a prebriefed g-load or angle-of-attack which will allow
continuation of the turn without a loss of energy.

The outcome of the maneuver can be measured by comparing aspect angle,
line of sight angle, range, closure and energy measures before and after
the maneuver. In addition, the angle-of-attack or g-loading should be
tracked throughout the maneuver to determine whether the parameters
remained within accepted bounds. In addition, sideslip should be tracked
during all high angle-of-attack maneuvers.

BREAK TURN

The break turn is a maximum rate turn which employs the highest
available g-loading. The turn quickly dissipates energy and is, therefore,
most applicable to last ditch defensive maneuvering. During training, a
prebriefed g-loading is used for the break turn.

The effectiveness of the maneuver, again, is determined by measuring

the aspect angle, line of sight angle, range, closure, and energy before
and after the maneuver. G-loading or angle-of-attack and sideslip should
also be tracked to assure that they remained within desired tolerances
during the maneuver.

CORNER TURN

The corner turn (a special case of the break turn) is the tightest
turn that can be made by a specific aircraft type at a given altitude and
weight without stalling or sustaining aircraft structural damage. The
corner turn is only possible at one specific aircraft speed (the corner
velocity) at the given altitude. The corner turn may be used during both
offensive and defensive maneuvering. "'

Because it is flown according to defined parameters, the corner turn
is slightly different than the other BFM maneuvers described here and more

.
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mechanical measurement may be used. In addition to the position measures
(aspect angle, line of sight angle, range, closure and energy) important
measures include altitude, airspeed, g-loading and sideslip.

REVERSAL

A reversal is a rapid change in the direction of a turn, made by a
defender in an attempt to exploit an attacker's overshoot on the outside of
the defender's turn. It is accomplished by a rapid roll, loaded or unloaded
depending on the attackers position, into the opposite direction of the
original turn.

Performance measurement during the reversal should concentrate pri-
marily on the outcome of the maneuver in terms of changes in aspect angle, . .
line of sight angle, range, closure and energy. Depending on the purpose
of measurement, however, other measures such as roll rate, g's, power and L
pitch during the reversal maneuver may be desirable.

HIGH YO-YO

The high yo-yo is performed by the attacking aircraft in order to pre-
vent overtaking the defender during a turn. In this maneuver, the
attacking aircraft pulls upward, out of the plane of the turn, and then
back down into the turning plane. This allows the attacker to dissipate
energy and to travel a slightly longer flightpath than the defender,
thereby preventing an overshoot.

Performance measurement during the high yo-yo is primarily based on the
outcome of the maneuver and whether it accomplished its desired goals of
decreasing aspect angle and line of sight angle or maintain a low aspect
and line of sight while greatly decreasing the closure rate. Thus, the
most important performance indicator is the difference between the aspect,

V line of sight, and closure rates at the inception and termination of the
maneuver. Other measures of some importance are airspeed, altitude and g-
loading during the maneuver.

LOW YO-YO
The low yo-yo is an acceleration and cutoff maneuver, performed to

allow the attacking aircraft to close on a maneuvering defender. In this.

maneuver, the attacking aircraft pushes downward out of the plane of the
defenders maneuver and, while accelerating, turns to cut across the tail of
the defender. The attacker then pulls upward to intercept the defender.

Performance measurement of the low yo-yo is very similar to that for
the high yo-yo since both maneuvers are involved with optimizing the
closure rate while maintaining or decreasing aspect and line of sight
angles. Aspect angle, line of sight angle, range, and closure should be
measured before and after the maneuver with the quality of the maneuver

indicated by the differences. Other important variables may be airspeed,
altitude and g-loading.
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SCISSORS

The scissors is a slow speed, high angle-of-attack series of turn
reversals by a pair of adversaries, neither of whom has a positional advan-
tage. It generally begins when an attacking aircraft overshoots, the .7
defender reverses, and the pilots find themselves canopy to canopy. They
each continue reversals, waiting for the other to move in front or
separate.

Performance measurement of the scissors is especially complex because .4
the entry is usually unintentional and there is no well defined termination
point for the maneuver. Theoretically, with evenly matched pilots and
aircraft, the scissors could continue until one or both aircraft ran out of
fuel. Once the pilot recognizes that he has entered a scissors, he may

.*.j elect either to remain in the maneuver, maintaining low speeds and high
angles of attack, until he is able to decrease his aspect and line of
sight, or he may choose to attempt to separate.

During the scissors, measures of aspect angle and line of sight angle
are of utmost importance. Other important variables may be airspeed, angle
of attack, power, pitch and roll rate. If the pilot elects to separate
from the maneuver, the aspect and line of sight angles at the point of
separation are also important.

bothA variation of the scissors is the vertical rolling scissors in which
both aircraft find themselves in a tight descending spiral. This situation
is considered more of a predicament than a bona fide BFM maneuver, and is
not entered intentionally.

BARREL ROLL ATTACK

: i The barrel roll attack is similar to the high yo-yo in that it allows
the attacker to cut off and intercept a defender while controlling for a

possible overshoot. The maneuver begins at relatively long range and with
the attacker at a high airspeed and involves a vertical roll by the
attacker to control the potential overshoot while conserving energy. The
aircraft exits the vertical roll in an improved position of aspect angle,
line of sight angle and range.

Again, the primary measurement criterion is the outcome of the maneuver
in terms of aspect angle, line of sight angle, range, closure, and com-
parative energy states, between the beginning and end of the maneuver.
Also important is measurement of G's, pitch, roll rate, airspeed and alti-
tude.

• ."1-V-1 FREE ENGAGEMENTS

During training, BFM is practiced primarily against a target aircraft
-*that is flying a predictable profile. This allows the student pilot to

become familiar with the required maneuvers without having to be concerned
about the adversary's combat tactics. The student is allowed to fly a
complete maneuver and to recognize the maneuver outcomes in terms of any
improvement in relative position.
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Duig1-v-1 free engagements, the student takes one step closer to the
realword ar cmba siuaton.During these free engagements, each

aircraft is maneuvering in response to the other and both are trying to

obtain and maintain a position of advantage. While air combat engagements
of this nature would be rare under current air warfare doctrine, this phase

While 1PM frsthe foundation for maneuvering during the free engage-
ments it is rare that a textbook 1PM maneuver is flown from start to
completion. Pilot performance during free engagements involves smooth
transitions between portions of 1PM maneuvers as a constantly changing
stream of responses to the adversary.

Measurement of performance during free engagements, therefore, is one .

step farther removed from classical, profile-based measurement than the
other BFM maneuvers. Performance during 1-v-I free engagements has a
number of dimensions that must be captured empirically to provide a
complete performance metric. During interviews with air combat experts,
Kelly, et al. (1979) developed a taxonomy of skills, traits and performance

* dimensions important to pilot performance. These included:

Personal traits

Aggress iveness .

Decisiveness
Situation awareness

Knowledge and skills

Knowledge of weapons and tactics
K: Knowledge of and ability to apply BPM

Basic flying skill -

Performance indicators

Maintains offensive position
Wins engagements

The study then completed a detailed performance analysis of a large
number of 1-v-I free engagements and, through multivariate statistical
techniques, found that several types of measures, averaged or tallyed
across an entire engagement, could be used as indicators of performance.
These included measures of energy management, control activity (especially
throttle and speedbrake, ) relative aircraft positions, aircraft maneuvering
activity, and weapons success.

Measurement of relative aircraft positions appears to be the most
crucial factor in the empirical measurement of 1-v-i free engagements both
as a means of measuring performance, itself, and as a means of segmenting
an engagement for the application of other performance measures.

Some relative position measures that have been found to be important
in themselves include:
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Offensive time. The percentage of an engagement that a pilot was in
an offensive position as defined by aspect angle, line of sight angle,
and range.

Defensive time. The percentage of time during an engagement that a
pilot was in a defensive position as defined by aspect angle, line of
sight, and range.

Offensive time/Defensive time. The ratio of offensive time to defensive
time.

Gun tracking error. The average mil error while in a gun tracking
position.

Time opponent in sight. Based on the field of view from the cockpit,
the percentage of time during an engagement that an opponent is visible
to the pilot.

Time in a weapons envelope. The percentage of time during an engage-
ment that the pilot is in his adversary's cone of vulnerability with
a line of sight angle of near zero.

Aspect angle + Line of sight angle. The sum of the aspect angle and
line of sight angle provides a parsimonious indicator - the position
of relative advantage or disadvantage at a given instant. As the sum
approaches zero degrees, advantage is greater and as it approaches 360
degrees, disadvantage is greater.

Relative aircraft position may also serve as a means of segmenting a
l-v-i engagement into subparts for more precise measurement. This approach
has been referred to (Wooldridge, et al., 1982) as a TACSPACE model. Com-
binations of aircraft aspect angles, line of sight angles, ranges, and
elevations above or below the fighter can be represented with a three
dimensional cube. Based on the measurement data to be analyzed, this
structure can be modified to combine cells as needed according to the spe-
cific measurement situation.

This approach assumes that at a given combination of aspect, line of
sight, range, and elevation, the viable options available to a pilot in
terms of maneuvering and tactics will be greatly limited. Therefore,
within a given TACSPACE cell, variance within a given control measure due
to aircraft position effects should be greatly reduced.
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APPENDIX B

FORTRAN TRANSFORMATION PROGRAMS

This appendix consists of a series of FORTRAN programs

discussed in Section 6.

THDAT FOR
LSTRP3. FOR
STRIP FOR
THMEAS •FOR
AMPDIST.FOR
CUMDIST. FOR
MISR. FOR
PFOURIER. FOR
MULTR. FOR
CROSS. FOR
PLOT. FOR
RANDU. FOR

I.
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C --- - - - - - - - - - - -

C PROGRAM THDAT
C -

C
C PROGRAM TO GENERATE SAMPLE
C TIME HISTORY DATA
C 2.REALI
TUPI - 2. * 3.141592654
IF (IOWRIT(5,0,0,"THDAT.FIL")) STOP
DO 500 1-0.0,60.2,0.2

C
C GENERATE TARGET DATA
C
TGT - 2.*SIN (TUPI*0.5*I) + 2.5*SIN(TUPI*0.4*I)

1 +3.33333333*SIN(TUPI*0.3*I) + 5.*SIN(TUPI*.2*I)
2 + 10.*SIN(TUPI*O.1*I)

C
C GENERATE HURAN RESPONSE DATA
C (FIRST TERM IS HIGH FREQU. NOISE, AND
C HIGHEST TWO FREQUENCIES SHOW SOME PHASE LAG)
C
C INSERT ONE STEP OF DELAY INTO OPERATOR RESPONSE

*- C

1-1-0.2

HR - 0.5*SIN(TUPI*0.75*I - 1.0)
1 + 1.5*SIN(TUPI*0.5*I -1.0) +2.2*SIN(TUPI*.4*I -.75)
2 +3.*SIN(TUPI*0.3*I) +4.9*SIN(TUPI*0.2*I)
3 + 9.8*SIN(TUPI*O.1*I)

C RESET VALUE OF I
C
1-1+0.2

C
C
C COMPUTE ERROR
C

ERR - TGT - HR
C
C OUTPUT DATA

WRITE (1,100) I, TGT, HR, ERR N
WRITE (5,100) I, TGT, HR, ERR
100 FORMAT (F5.1,8F8.3)
C A
C END OF LOOP
C
500 CONTINUE
IF(IOCLOS(5)) STOP

* STOP
END

C ------------------------------
!. . *1%.:C c PROGRAM LSTR3 -

C 
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C READ TIME HISTORY DATA 1
C AND PLOT IN STRIP CHART FORMAT
DIMENSION X(151),Y(151),Z(151)
INTEGER*2 I,N

C
C OPEN THE FILE
IF (IOREAD (5,0,0,"THDAT.FIL")) GOTO 999
C READ DATA
DO 50 1-1,301
READ (5,iO0,ENDFILE-50) T,TGT,HR,ERR
X(I)-TGT;Y(I)-HR;Z(I)-ERR

50 CONTINUE
IF(IOCLOS(5)) STOP 3

X\ CALL LSTRP3(X,Y,Z,151,-25.,25.,O.,30.)
60 STOP
999 WRITE (1) "ERROR"

STOP
100 FORMAT (F5.1,3F8.3)
END
C
C
C
SUBROUTINE LSTRP3(V,W,X,N,XMrIN,XMAX,THIN,TMAX)

C
C SUBROUTINE PRINTS A STRIP CHART FOR
C THREE VARIABLE WITH PLOTTING SCALE SET
C FOR COMPUTER SIZE PAPER OR 16.7 CHAR/IN.
C.. C TVALUES MUST BE AT REGULAR INTERVALS, E.G.,

C TIME
C X- ARRAY TO BE PLOTTED IN STRIP CHART FORM
C ALSO VARIABLES V AND W.
C N - NUMBER OF POINTS TO BE PLOTTED
C XMIN, XMAX - RANGE OF X-VALUES
C TIMIN, TKAX - RANGE OF PARAMETER AGAINST WHICH
C X IS TO BE PLOTTED AT REGULAR INTERVALS
C (LONG DIMENSION OF THE PAPER)
C
DIMENSION X(151),IA(101),XLAB(21),YLAB(61)
DIMENSION V(151), W(151)
INTEGER*2 N,I,J,JI,I1,I2,IA
DATA ISP,IPR,IS/1H ,IH*,lHX/
DATA IPL/1H+/

20 FORMAT (10X,1H+,1O1A1)
30 FORMAT (lX,F8.2,1X,1H1/4,lO1A1)
40 FORMAT (IOX,2H+I,IO(10H I-I-I1))I
50 FORMAT (4X,11(3X,F7.2))
C
C COMPUTE SPACING
C

{.~.XSP - 100.
YSP - N-1
DX - XSP/(XIAX-XKIN)
DY - YSP/(TMAX-TMIN) B-2
C
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C COMPUTE REQUIRED LA.BELS

CDO 4 0 0 1-1,101,

400 XLAB(J) - (I-1)/DX+X141N
DO 410 I-1,N,5

* J-I/5+1
* 410 YLAB(J) - (I-1)/DY+TMIN

C
C WRITE BEGINNING X LABELS
C S'

WRITE (4,50) (XLAB(I),I-1,21,2)
WRITE (4,40)

C
C PLOT N VALUES OF X
C
DO 500 J1-1,N

*IF(W(J1).GT.XKAX) W(J1)-XMAX
IF(W(J1).LT.XKIN) W(J1)-XMIN
IF(V(Jl).GT.X4AX) V(J1)-XKAX
IF(V(J1).LT.XMIN) V(J1)-XHIN
IF(X(J1).GT.XMAX) X(Jl)-XMAX

*IF(X(Jl).LT.XMIN) X(Jl)-XMIN
C *. S7

C INITIALIZE PLOT ARRAY WITH SPACES
C
DO 200 1-1,101
200 IA(I)-ISP
XX-DX*(X(J1 )-XMIN)+1.5 .k.

.5- IinIFIX(XX)

C CHANGE PROPER SAETO A LTSYMBOL
C
IA(I) - IPR

I-DX*(V(JI )-XMIN)41.5

IA(I)-IPL

C WRITE A LINE OF PLOT INFORMATION
C
DO 450 11-1,100

* 12 - 102-Il
IF (IA(12).NE.ISP) GOTO 475

450 CONTINUE
475 IF (MOD((J1-1),5).EQ.0) GOTO 490

* WRITE (4,20) (IA(I),I-1,12)
GOTO 500
490 WRITE (4,30) YLAB (JI/5+1),(IA(I),Iu1,12)
500 CONTINUE
C
C WRITE ENDING X LABELS

* C
WRITE (4,40)

WN WRITE (4,50) (XLAB(I),I-1,21,2)
END

a9* 5'



C TEST SUBROUTINE STRIP
DIM4ENSION X(301)
INTEGER*2 IN
C
C OPEN THE FILE
IF (IOREAD (5,O,0,"THDAT.FIL")) GOTO 999
C READ DATA
DO 50 1-1,301
READ (5,100,ENDFILE-50) T,TGTHRERR
50 X(I)-TGT
CALL STRIP (X,301,-25.,+25.,O.,60.) t

IF (IOCLOS(5)) GOTO 999

60 STOP
999 WRITE (1) "ERROR"

STOP
100 FORMAT (F5.1,3F8.3)
END
C
C .;
C

SUBROUTINE STRIP(X, N,XMIN,DXAX,TMIN, TMAX)
C TVALUES MUST BE AT REGULAR INTERVALS, E.G.,
C TIME
C X- ARRAY TO BE PLOTTED IN STRIP CHART FORM
C N - NUMBER OF POINTS TO BE PLOTTED
C XMIN, XMAX - RANGE OF X-VALUES
C TIMIN, TMAX - RANGE OF PARAMETER AGAINST WHICH
C X IS TO BE PLOTTED AT REGULAR INTERVALS
C (LONG DIMENSION OF THE PAPER)
C
DIMENSION X(301),IA(51),XLAB(11),YtAB(61)
INTEGER*2 N,I,J,J1,Il,I2,IA
DATA ISP,IPR,IS/1H ,1H*,lHX/. 20 FORMAT (I0X,1H+,80A1)

30 FORMAT (1X,F9.2,1H1/4 80A1)
40 FORMAT (10X,2H+I,5(1+-H.--f-I4+I))
50 FORMAT (6X,6F1O.2)
C
C COMPUTE SPACING
C

XSP - 50.

YSP - N-i
DX - XSP/(XMAX-XMIN)
DY - YSP/(TMAX-TMIN)C

C COMPUTE REQUIRED LABELS
C
DO 400 1-1,51,5
Ji-I/5 + 1
400 XLAB(J) - (I-1)/DX+XMIN
DO 410 I-1,N,5
J-1/5+1

410 YLAB(J) - (I-1)/DY+TMIN
C
C WRITE BEGINNING X LABELS

. .. 747
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C
WRITE (4,50) (XLAB(I),I-1,11,2)
WRITE (4,40)

C PLOT N VALUES OF X
C
DO 500 JI-l,N
C
C INITIALIZE PLOT ARRAY WITH SPACES
C
DO 200 1-1,51
200 IA(i)-ISP
XX-DX*(X(Jl)-XIN)+1.5
I-IFIX(XX)
C
C CHANGE PROPER SPACE TO A PLOT SYMBOL
C
IA(I) - IPR -'

* C
C WRITE A LINE OF PLOT INFORMATION
C
DO 450 I1-1,50
12, -52-Il
IF (IA(I2).NE.ISP) GOTO 475

450 CONTINUE
475 IF (MOD((J1-l),5).EQ.O) GOTO 490
WRITE (4,20) (IA(I),I-1,I2)
GOTO 500
490 WRITE (4;30) YLAB (Jl/5+1),(A(I),I-1,I2)
500 CONTINUE
C
C WRITE ENDING X LABELS
C
WRITE (4,40)
WRITE (4,50) (XAB(I),I-11,)-
END

C-------------------------------------
C PROGRAM THMEAS
C C-----------------------------
C
C READ THE THDAT. FIL FILE AND COMPUTE
C TIME-HISTORY MEASUREMENTS
C TIME ON TARGET
C ZERO CROSSINGS
C PEAK VALUE
C AVERAGE ERROR
C ABSOLUTE AVERAGE ERROR
C MEAN SQUARE ERROR ,.1,.
C ROOT MEAN SQUARE ERRORS
C REVERSALS
C
REAL MS
C
C INITIALIZE
C B-5
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TOT - 0.0
BAND - 1.0
ZCROSS - 0.0
PEAK - 0.0
COUNT 0.0
AE - 0.0

AAE -0. 0
MS - 0.0
REVERS - 0.0
RTOL - 0.2
.TEND - 60.0
C 71 ,
C OPEN THE FILE

C

IF(IOREAD(5,0,0,"THDAT.FIL"))GOTO 999
C
C
C READ DATA

," 1 CONTINUE €

READ (5,100,ENDFILE-50) T,TG ,HR,ERR

100 FORMAT (F5.1,3F8.3)
C
C COMPUTE TIME ON TARGET
C
IF (ABS(ERR) .LE. BAND) TOT-TOT+1.O
C

C COMPUTE ZERO CROSSINGS
C

IF(T) 10,10,11
10 ALAST - ERR/ABS(ERR)
GOTO 12
11 Al - ERR/ABS(ERR)

IF(ABS(Al-ALAST)-.2) 14,14,13
13 ZCROSS - ZCROSS + 1.0
14 ALAST - Al
12 CONTINUE
C
C COMPUTE PEAK VALUE

IF(ABS(ERR) .GT. ABS(PEAK)) PEAK-ERR

C
C COMPUTE AVERAGE ERROR
C
AE - AE + ERR
COUNT - COUNT + 1.0

C
C COMPUTE ABSOLUTE AVERAGE ERROR
AAE - AAE + ABS(ERR)

C COMPUTE MEAN SQUARE ERROR

MS nMS + ERR*ERR B-6



C
C
C COMPUTE REVERSAL COUNT
C PICK UP FIRST VALUES FOR DERIVATIVE CALC.

IF (T) 21,21,22 .
21 TLAST - TGT

HLAST - HR
GOTO 26

C ALSO SKIP OVER LAST VALUE
22 IF (T - TEND) 23,26,26
C COMPUTE SIGN OF DERIVATIVES
23 TDOT - TGT -TLAST -

STDOT - TDOT/ABS(TDOT)
HDOT - HR - HAST
SHDOT - HDOT/ABS(HDOT)

C COUNT A REVERSAL IF DERIVATIVES ARE NOT
C THE SAME SIGN
IF(ABS(STDOT - SHDOT) - RTOL) 25,25,24
24 REVERS - REVERS + 1.0
C UPDATE "LAST VALUE" FOR DERIVATIVE CALC
25 HLAST - HR

* TLAST - TGT
26 CONTINUE
c
GOTO 1

50 CONTINUE
C
C FINISH CALCULATIONS
C

AE - AE/COUNT
AAE - AAE/COUNT
COUNT - COUNT - 1.0
MS - MS/COUNT
CRS - SQRT(MS)

C OUTPUT RESULTS r '

C
WRITE (4,110) TOT
110 FORMAT ( " TIME (SAMPLES) ON TARGET - ", F8.2)
WRITE (4,111) ZCROSS
111 FORMAT ( ' ZERO CROSSINGS - ', F8.0 )
WRITE (4,112) AE

112 FORMAT (" AVLUE ERAGE ERROR -"F82, FWRITE (4 ,113) AAE ,"

113 FORMAT (" ABSOLUTE AVERAGE ERROR - " F8.2)W( 3
WRITE (4,114) MS

114 FORMAT (" MEAN SQUARE ERROR - -, F8.2)
WRITE (4,115) RMS
115 FORMAT (" ROOT MEAN SQUARE ERROR F8.2)
WRITE (4,116) PEAK
116 FORMAT (" PEAK VALUE - ", F8.2)

WRITE (4,117) REVERS R SS " .117 FORMAT- NUMBER OF REVERSALSB_" F8.2)-i -'

C B 7
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C CLOSE FILE

IF (IOCLOS(5)) GOTO 999
60 STOP
999 WRITE (1) "ERROR"
END
C - - - - - - --.. -

-C PROGRAM AMPDIST
S,'*.. -C---------------------------------------

C
C COMPUTE AN DISTRIBUTION OF
C AMPLITUDES AND PRODUCE A PLOT
C
DIMENSION A(112), B(112)

C
C THE RANGE OF THE DISTRIBUTION IS BETWEEN
C -BMAX AND +BMAX
C
BMAX - 10.0
BMIN - -10.0
C
C INITIALIZE ARRAYS TO BE PLOTTED
DO 1 K-1,112 S..

AK-K-I
A(K)-O.O
1 B(K)-BMAX* (-1.0 + 2.0*AK/100.)
C
EN - 0.0
C
C OPEN THE FILE
IF (IOREAD (5,2,0,"THDAT.FIL")) STOP 1
IF (IOWRIT(6,2,0,"AMPDIST.FIL")) STOP 8
C READ DATA -
2 CONTINUE
READ (5,100,ENDFILE'50) T,TGTHR,ERR
EN - EN + 1.0
100 FORMAT (F5.1,3F8.3) "-5*-<
C
C COMPUTE CUMUL. DISTRIBUTION
C CHANGE DENSITY OF PLOT BY STEP SIZE
C ON THE FOLLOWING DO-LOOP
C
C SET STEP - 10 FOR THIS EXAMPLE (SET BY
C TRIAL AND ERROR
DO 3 I- 1,101,10
C NOTE B(I+STEP) AND A(I+HALF-STEP) IN THE
C NEXT INSTRUCTION

% IF((B(I).LE.ERR).AND. (B(I+10).GT.ERR))A(I+5)-A(I+5)+1.0
3 CONTINUE
GOTO 2
50 CONTINUE
C
C PLOT
C
CALL PLT (B,A,101,BMIN,BMAX,O.,L0O.)

B-8 -'
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C
C CLOSE FILE

IF (IOCLOS(5)) STOP 2
IF(IOCLOS(6)) STOP 9

K. 60 STOP 3
END
C
C
C
SUBROUTINE PLT (X,Y,N,XMIN,XMAX,YMINYMAX)
DIMENSION X(112),Y(112),IA(51,51),XLAB(I1),YLAB(11)
DATA ISP,IPR,IS/1H ,IH* lHX/
20 FORMAT (1OX,IH+,8OA1)
30 FORMAT (IX,E9.2,lH-,80A1)
40 FORMAT (10X,2H+I,5(OH - I : - HI))
50 FORMAT (6X,6E1O.2)
XSP -50.
YSP-XSP
DX-XSP/ (XMAX-XMIN)
DY-YSP/(YMAX-YMIN)
DO 200 1-1,51
DO 200 J-1,51
200 IA(I,J)-ISP
DO 300 K-1,N
I-DX*(X(K)-XMIN)+1 .5
J-DY*(Y(K)-YMIN)+1.5
IA(I,J)-IPR

300 CONTINUE
DO 400 1-1,51,5
J-I/5+1 I
XLAB(J)-(I-)/DX+XMIN
XLAB(1)-XLAB(1)
YLAB(J)-(I-1 )/DY+YMIN
400 CONTINUE

DO 500 J1-1,51

DO 450 Il-1,50
12-52-Il
IF(IA(I2,J).NE.ISP) GO TO 475

450 CONTINUE
475 IF(MOD((J-1),5).EQ.0) GO TO 490
WRITE (6,20) (IA(I,J),I-1,I2)
GO TO 499 . :
490 WRITE (6,30) YLAB(J/5+1),(IA(I,J),I-1,I2)
499 CONTINUE
500 CONTINUE

WRITE (6,40)
WRITE (6,50) (XLAB(I),I-1,11,2)
RETURN
END
C ---------------------------------------
C PROGRAM CUMDIST
C --------------------------------------
C B-9
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C COMPUTE AN CUMULATIVE DISTRIBUTION OF
C AMPLITUDES AND PRODUCE A PLOT 4

C
DIMENSION A(101), B(101)

C
C INITIALIZE ARRAYS TO BE PLOTTED
C THE RANGE OF THE DISTRIBUTION IS BETWEEN K.-
C -BMAX AND +BHAX. r.

BMAX -10.0
DO 1 K-1,101
AK-K-i
A(X)-O.O
1 B(K) - BMAX *(-1.0 + 2.*AK/100.)
EN - 0.0
C
C OPEN THE FILE
IF (IOREAD (5,2,0, THIAT.FjL")) STOP 1
IF (IOWRIT (6,2,O,"*CUMDIST.FIL")) STOP 9
C READ DATA
2 CONTINUE
READ (5,100,ENDFILE-50) T,TGT,HR,ERR
EN - EN + 1.0
WRITE (1,100) T
100 FORMAT (F5.1,3F8.3)
C
C COMPUTE ACCUM. DISTRIBUTION
C
DO 3 I- 1,101
IF (ERR .LT. B(I) )A(I)-A(I) +1.0
3 CONTINUE

GOTO 2

50 CONTINUE 1
C CONVERT SO THAT ABSCISSA CAN BE READI
C IN PERCENT
C
DO 4 L- 1,101
AL-L
WRITE (1,100) AL,B(L),A(L)
4 A(L)- 100.0* A(L)/EN
C
C PLOT

CALL PLT (B,A,101,BMIN,BMAX,O.,100.)
Cle
C CLOSE FILE
C
IF (IOCLOS(5)) STOP 2
IF (IOCLOS(6)) STOP 8

60 STOP 3
END
C
C B-i10
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C
C .. .. .. .. . . . . . .. . . . . . . .. . . . . . .. . . . . . .

C SUBROUTINE MISR
C
C PURPOSE
C COMPUTE MEANS, STANDARD DEVIATIONS, SKEWNESS AND KURTOSIS,I CORRELATION COEFFICIENTS, REGRESSION COEFFICIENTS, AND CODEi ~C STANDARD ERRORS OF REGRESSION COEFFICIENTS WHEN THERE ARE ..

~~~C MISSING DATA POINTS. THE USER IDENTIFIES THE MISSING DATA " "'..o."-

SC BY MEANS OF A NUMERIC CODE. THOSE VALUES HAVING THIS CODE
,'. C ARE SKIPPED IN COMPUTING THE STATISTICS. IN THE CASE OF THE "*'C

C CORRELATION COEFFICIENTS, ANY PAIR OF VALUES ARE SKIPPED IF
c EITHER ONE OF THEM ARE MISSING.C

C USAGE
C CALL MISR (NO,M,X,CODE,XBAR,STDSKEW,CURTR,N,ABS,IER)

* C
C DESCRIPTION OF PARAMETERS
C NO - NUMBER OF OBSERVATIONS
C M - NUMBER OF VARIABLES
C X - INPUT DATA MATRIX OF SIZE NO X M.
C CODE - INPUT VECTOR OF LENGTH M, WHICH CONTAINS A NUMERIC
C MISSING DATA CODE FOR EACH VARIABLE. ANY OBSERVATION
C FOR A GIVEN VARIABLE HAVING A VALUE EQUAL TO THE CODE
C WILL BE DROPPED FOR THE COMPUTATIONS.
C XBAR - OUTPUT VECTOR OF LENGTH M CONTAINING MEANS
C STD - OUTPUT VECTOR OF LENGTH H CONTAINING STANDARD DEVI-
C ATIONS- I.

C SKEW - OUTPUT VECTOR OF LENGTH M CONTAINING SKEWNESS !

C CURT - OUTPUT VECTOR OF LENGTH M CONTAINING KURTOSIS
C R - OUTPUT MATRIX OF PRODUCT-MOMENT CORRELATION

' C COEFFICIENTS. THIS WILL BE THE UPPER TRIANGULAR
C MATRIX ONLY, SINCE THE M X M MATRIX OF COEFFICIENTS
C IS SYMMETRIC. (STORAGE MODE 1)
C N - OUTPUT MATRIX OF NUMBER OF PAIRS OF OBSERVATIONS USED
C IN COMPUTING THE CORRELATION COEFFICIENTS. ONLY THE
C UPPER TRIANGULAR PORTION OF THE MATRIX IS GIVEN.

-C (STORAGE MODE 1)
C A - OUTPUT MATRIX (M BY M) CONTAINING INTERCEPTS OF

. C REGRESSION LINES (A) OF THE FORM Y-A+BX. THE FIRST
C SUBSCRIPT OF THIS MATRIX REFERS TO THE INDEPENDENT
C VARIABLE AND THE SECOND TO THE DEPENDENT VARIABLE. S t
C FOR EXAMPLE, A(1,3) CONTAINS THE INTERCEPT OF THE
C REGRESSION LINE FOR TWO VARIABLES WHERE VARIABLE 1

,I C IS INDEPENDENT AND VARIABLE 3 IS DEPENDENT. NOTE
C THAT MATRIX A IS STORED IN A VECTOR FORM.

C B - OUTPUT MATRIX (M BY M) CONTAINING REGRESSION
- C COEFFICIENTS (B) CORRESPONDING TO THE VALUES OF

C INTERCEPTS CONTAINED IN THE OUTPUT MATRIX A.
C S - OUTPUT MATRIX (M BY M) CONTAINING STANDARD ERRORS
C OF REGRESSION COEFFICIENTS CORRESPONDING TO THE
C COEFFICIENTS CONTAINED IN THE OUTPUT MATRIX B.
C IER -0, NO ERROR.
C 1, IF NUMBER OF NON-MISSING DATA ELEMENTS FOR J-TH

B-li " '--.%
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C VARIABLE IS TWO OR LESS. IN THIS CASE, STD(J),
C SKEW(J), AND CURT(J) ARE SET TO 10**75. ALL
C VALUES OF R, A, B, AND S RELATED TO THIS VARIABLE
C ARE ALSO SET TO 10**75.
C 2, IF VARIANCE OF J-TH VARIABLE IS LESS THAN
C 10**(-20). IN THIS CASE, STD(J), SKEW(J), AND
.C CURT(J) ARE SET TO 10**75. ALL VALUES OF R, A,
C B, AND S RELATED TO THIS VARIABLE ARE ALSO SET TO
C 10**75.
C
C REMARKS
C THIS SUBROUTINE CANNOT DISTINGUISH A BLANK AND A ZERO.

-: C THEREFORE, IF A BLANK IS SPECIFIED AS A MISSING DATA CODE IN
C INPUT CARDS, IT WILL BE TREATED AS 0 (ZERO). - -"

C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE -

C
C METHOD
C LEAST SQUARES REGRESSION LINES AND PRODUCT-MOMENT CORRE-
C LATION COEFFICIENTS ARE COMPUTED.

C

C
SUBROUTINE MISR (NO,M,X,CODE,XBAR,STD, SKEW,CURT,R,N,A,B,S,IER)

C
DIMENSION X(l),CODE(I),XBAR(I),STD(1),SKEW(I),CURT(1),R(1),N()
DIMENSION A(1),B(1),S(1)

C COMPUTE MEANS
C

IER-O
L-O
DO 20 J=1,M
FN-O.O
XBAR(J)-O.O

DO 15 I-1,NO
L-L+l
IF(X(L)-CODE(J)) 12, 15, 12

12 FN-FN+1.0
XBAR(J)=XBAR(J)+X(L)

15 CONTINUE
IF(FN) 16, 16, 17

16 XBAR(J)-O.O

GO TO 20
17 XBAR(J)-XBAR(J)/FN
20 CONTINUE

C
C SET-UP WORK AREAS AND TEST WHETHER DATA IS MISSING
C

L-O
DO 55 J'l,M

LJJiNO*(J-1)

B12-
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KIuM*(J-1)

DO 54 I-1,J
KI-KI+1
K-i KJ4+4

TI-O.O0
TJ-O.O0
TII-0. 0
TJJ-0.O0
TIJ-O.O 0~
NIJ-O

LJ-LJJ
L-L+1
DO 38 K-1,NO
LI-LI+1
LJ-LJ+1
IF(X(LI)-CODE(I)) 30, 38, 30

30 IP(X(LJ)-CODE(J)) 35, 38, 35
C
C BOTH DATA ARE PRESENT
C

*35 XX-X(LI)-XBAR(I)
YY-X(LJ)-XBAR(J)
TI-TI+XX
TII.TII+XX**2
TJ-TJ+YY
TJJ-TJJ+YY**2

TIJ-TIJ+XX*YY
NIJ-NIJ+1

SUMY-SUMY+X(LJ)
IF(I-J) 38, 37, 37

37 SKEW(J)mSKEW(J)+YY**3
CURT(J)-CURT(J)+YY**4

38 CONTINUE
C *.*

*C COMPUTE SUM OF CROSS-PRODUCTS OF DEVIATIONS
C

IF(NIJ) 40, 40, 39
39 FN-NIJ

R(L)-TIJ-TI*TJ/FN
N(L)-NLJ
TII-TII-TI*TI/FN
TJJOTJJ-TJ*TJ/FN * ,

C
C COMPUTE STANDARD DEVIATION, SKEWNESS, AND KURTOSIS
C

40 IF(I-J) 47, 41, 47 ,*~

41 IF(NIJ-2) 42,42,43
42 IER-1

* ~R(L)-1.0375 31
A(KI)'.1.0175



B(KI)-l.0E75
S(KI)-l.0E75
GO TO 45

43 STD(J)-R(L)

R(L)-1.O
A (KI )-O. 0
B(KI)-l.0
S(KI)-O.O

C
IF(STD(J)-(l.OE-20)) 44,44,46

44 IER-2
45 STD(J)-l.0E75

SKEW(J)-l.OE75
CURT(J)-l.0E75
GO TO 55

C
46 WORK-STD(J)/FN

SKEW(J)-(SKEW(J)/FN)/(WORK*SQRT(WORK))
CURT(J)-((CTJRT(J)/FN)/WORK**2)-3.O
STD(J)-SQRT(STD(J)/(FN-1.O))
GO TO 55

C
C COMPUTE REGRESSION COEFFICIENTS

C47 IF(NIJ-2) 48,48,50

48 IER-1
49 R(L)-1.0E75

A(KI)-l.0E75
B(KI)-l.0E75

S~~~ (KI-l OE7

A(KJ)-l.0E75
B(KJ)-l.0E75
S(KJ)-l.0E75
GO TO 54

C
50 IF(TII-(1.OE-20)) 52,52,51
51 IF(TJJ-(l.OE-20)) 52,52,53 7

52 IER-2
GO TO 49

C
53 STMX-SUMX/FN

SUMY-SUMY/FN ,'A

-, B(KI)-R(L)/TII "

A(KI )-SUHY-B(KI )*5jJ *;.X

B(KJ)-R(L)/TJJ

A(KJ)-SUMX-B(KJ)*SUMY
C CMUECREAINCEFCET
C CMUECREAINCEFCET

R(CRL/SR(I)SR(J)
C ()RL/SR(I)SR(J)

C CMUESADR ROSO ERSINCEFCET

C
B-14
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SUIMX-.(TJJ-TJJ*RR)/(FN-2)-
S(KI)-SQRT(SUHX/TII)
SM4Y-(TII-TII*RR) /(FN-2)
S (KJ )-SQRT(SUMY/TJJ)

C
54 CONTINUE
55 CONTINUE

C
RETURN
END

I.-
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C PROGRAM PFOURIERc
C
C COMPUTE FOURIER COEFFICIENTS FOR
C SAMPLE DATA.
C AND PLOT IN X-Y PLOT FORM
C
DIMENSION X(301),A(51),B(51)
C OPEN THE FILE
IF (ioREAD (5,o,o,"THDAT.FIL')) GOTO 999 ..

IF(IOWRIT(6,2,0,"PFOURIER.FIL")) STOP 8
C READ DATA
DO 50 1-1,301
READ (5,100,ENDFILE-60) T,TGTHR,ERR
100 FORMAT (F5.1,3F8.3)
X(I)-HR
50 WRITE (1,150)
150 FORMAT (2H *$
60 CONTINUE
NCOEFF - 50
CALL FORIT (X,150,NCOEFF,A,B,IER)
WRITE (4) FOURIER COEFF."
WRITE (4,180)
180 FORMAT (1H /)

WRITE (4)" FREQ COS SIN AMPL PHASE"
WRITE (4,180)
DO 300 J-1,NCOEFF
AJ-J-1
FREQ-AJ*(1.0/60.0) "
AMPL-SQRT(A(J)*A(J)+B(J)*B(J))
PHASE - 57.3*ATAN2(A(J),B(J))
WRITE (6,190) FREQ, A(J),B(J),AMPL,PHASE
A(J)-AMPL ; B(J)-FREQ
190 FORMAT (4F8.3,F8.0)
300 CONTINUE
CALL PLT (B,A,50,0.0,1.0,0.O,1O.0)

200 FORMAT (8F8.3) 4..

IF(IOCLOS(6)) STOP 9
55 IF (IOCLOS(5)) GOTO 999
STOP
999 WRITE (1) "ERROR"
CEND

..C .................................................................. C" .
C
C SUBROUTINE FORIT
C
C PURPOSE
C FOURIER ANALYSIS OF A PERIODICALLY TABULATED FUNCTION.
C COMPUTES THE COEFFICIENTS OF THE DESIRED NUMBER OF TERMS N,
C IN THE FOURIER SERIES F(X)-A(O)+SUM(A(K)COS KX+B(K)SIN KX)
C WHERE K-1,2,...,M TO APPROXIMATE A GIVEN SET OF .,

C PERIODICALLY TABULATED VALUES OF A FUNCTION.
C

B-16
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C USAGE
C CALL FORIT(FNT,N,M,A,BIER)
C
c DESCRIPTION OF PARAMETERS
C FNT-VECTOR OF TABULATED FUNCTION VALUES OF LENGTH 2N+1 .

C N -DEFINES THE INTERVAL SUCH THAT 2N+l POINTS ARE TAKEN
C OVER THE INTERVAL (0,2PI). THE SPACING IS THUS 2PI/2N+I_
c M -MAXIMUM ORDER OF HARMONICS TO BE FITTED -f
C A -RESULTANT VECTOR OF FOURIER COSINE COEFFICIENTS OF I,,,

C LENGTH M+l
C A SUB 0, A SUB 1,..., A SUB M
c B -RESULTANT VECTOR OF FOURIER SINE COEFFICIENTS OF
C LENGTH M+-
C B SUB 0, B SUB ,..., BSUB M
C IER-RESULTANT ERROR CODE WHERE
C IER-O NO ERROR
C IER-1 N NOT GREATER OR EQUAL TO M
C IER-2 M LESS THAN 0
C
C REMARKS
C M MUST BE GREATER THAN OR EQUAL TO ZERO
C N MUST BE GREATER THAN OR EQUAL TO M
C THE FIRST ELEMENT OF VECTOR B IS ZERO IN ALL CASES
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C USES RECURSIVE TECHNIQUE DESCRIBED IN A. RALSTON, H. WILF,
C 'MATHEMATICAL METHODS FOR DIGITAL COMPUTERS', JOHN WILEY
C AND SONS, NEW YORK, 1960, CHAPTER 24. THE METHOD OF INDEXING
C THROUGH THE PROCEDURE HAS BEEN MODIFIED TO SIMPLIFY THE
C COMPUTATION.
C
C...................................................................*.

SUBROUTINE FORIT(FNT,N,M,A,B,IER)
DIMENSION A(51),B(51),FNT(301)

C
C CHECK FOR PARAMETER ERRORS

CIER-O

20 IF(M) 30,40,40
30 IER-2 A.

RETURN
40 IF(M-N) 60,60,50
50 IER-I

V RETURN

C COMPUTE AND PRESET CONSTANTS

C
60 AN-N

COEF-2.0/(2.0*AN+1.0)
CONST-3.141593*COEF
S1-SIN(CONST) B-17
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Ci -COS (CONST)
C-i1.0
S-0.0
J-1
FNTZ-FNT(l)

70 U2-0.0

C
C FORM FOURIER COEFFICIENTS RECURSIVELY
C t'

75 UO-FNT (I )+2 .0*C*U1-U2
U2-Ul
U1-UO
I-I-i
IF(I-1) 80,80,75

80 A(J)mCOEF*(FNTZ+C*U1-U2)
B(J)WCOEF*S*U1
IF(J-(MI1)) 90,100,100

90 Q-C1*C-S1*S

C-Q
J-J+1
GO TO 70

100 A(1)u.A(1)*O.5
RETURN
END

B-18'
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400 CONTINUE

DO 500 J1-1,51
J-52-Jl
Do 450 11-1,50
12-52-Il
IF(IA(12,J).NE.ISP) GO To 475

450 CONTINUE
475 IF(MOD((J-1),5).EQ.O) GO TO 490
WRITE (6,20) (IA(I,J),I-1,12)

* GO TO 499
490 WRITE (6,30) YLAB(J/5+1),(IA(I,J),I-1,I2)
499 CONTINUE
500 CONTINUE

WRITE (6,40) ,-

WRITE (6,50) (XIAB(I),I-1,11,2)
RETURN
END ~ ~
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C

C
C SUBROUTINE MULTR
C
C PURPOSE
C PERFORM A MULTIPLE LINEAR REGRESSION ANALYSIS FOR A
C DEPENDENT VARIABLE AND A SET OF INDEPENDENT VARIABLES. THIS
C SUBROUTINE IS NORMALLY USED IN THE PERFORMANCE OF MULTIPLE
C AND POLYNOMIAL REGRESSION ANALYSES.
C L
C USAGE
C CALL MULTR (N,K,XBAR,STD,D,RX,RY,ISAVE,B,SB,T,ANS)
C
C DESCRIPTION OF PARAMETERS
C N - NUMBER OF OBSERVATIONS.
C K - NUMBER OF INDEPENDENT VARIABLES IN THIS REGRESSION.
C XBAR - INPUT VECTOR OF LENGTH M CONTAINING MEANS OF ALL
C VARIABLES. M IS NUMBER OF VARIABLES IN OBSERVATIONS.
C STD - INPUT VECTOR OF LENGTH M CONTAINING STANDARD DEVI-"-"
C ATIONS OF ALL VARIABLES.
C D - INPUT VECTOR OF LENGTH M CONTAINING THE DIAGONAL OF
C THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS
C FROM MEANS FOR ALL VARIABLES.
C RX - INPUT MATRIX (K X K) CONTAINING THE INVERSE OF
C INTERCORRELATIONS AMONG INDEPENDENT VARIABLES. "" "
C RY - INPUT VECTOR OF LENGTH K CONTAINING INTERCORRELA-
C TIONS OF INDEPENDENT VARIABLES WITH DEPENDENT
C VARIABLE.
C ISAVE - INPUT VECTOR OF LENGTH K+l CONTAINING SUBSCRIPTS OF
C INDEPENDENT VARIABLES IN ASCENDING ORDER. THE 7;';
C SUBSCRIPT OF THE DEPENDENT VARIABLE IS STORED IN
C THE LAST, K+l, POSITION.
C B - OUTPUT VECTOR OF LENGTH K CONTAINING REGRESSION
C COEFFICIENTS.

V C SB - OUTPUT VECTOR OF LENGTH K CONTAINING STANDARD
C DEVIATIONS OF REGRESSION COEFFICIENTS.
C T -OUTPUT VECTOR OF LENGTH K CONTAINING T-VALUES.
C ANS - OUTPUT VECTOR OF LENGTH 10 CONTAINING THE FOLLOWING
C INFORMATION..
C ANS(l) INTERCEPT
C ANS (2) MULTIPLE CORRELATION COEFFICIENTC ANS(3) STANDARD ERROR OF ESTIMATE
C ANS(4) SUM OF SQUARES ATTRIBUTABLE TO REGRES-

C SION (SSAR)
C ANS(5) DEGREES OF FREEDOM ASSOCIATED WITH SSAR
C ANS(6) MEAN SQUARE OF SSAR
C ANS(7) SUM OF SQUARES OF DEVIATIONS FROM REGRES-
C SION (SSDR)
C ANS(8) DEGREES OF FREEDOM ASSOCIATED WITH SSDR
C ANS(9) MEAN SQUARE OF SSDR
C ANS(10) F-VALUE
C

TC REMARKS
C N MUST BE GREATER THAN K+1.

B-20
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C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C THE GAUSS-JORDAN METHOD IS USED IN T SOLUTION OF THE
C NORMAL EQUATIONS. REFER TO . W. COOLEY AND P. R. LORNES,
C 'MULTIVARIATE PROCEDURES FOR THE BEHAVIORAL SCIENCES',
C JOHN WILEY AND SONS, 1962, CHAPTER 3, AND B. OSTLE,
C 'STATISTICS IN RESEARCH', THE IOWA STATE COLLEGE PRESS,
C 1954, CHAPTER 8.
C
c
C

SUBROUTINE MULTR (N,K,XBAR,STD,D,RX,RY,ISAVE,B,SB,T,ANS)
DIMENSION XBAR(1),STD(1),D(1),RX(1),RY(1),ISAVE(1),B(1),SB(1),

1 T(l),ANS(l)
C

C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C
C DOUBLE PRECISION XBAR,STD,D,RX,RY,B,SB,T,ANSRM,BO,SSAR,SSDR,SY,
C 1 FNFI,SSARM,SSDRM,F
C
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C ROUTINE.
C
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT AND ABS IN
C STATEMENTS 122, 125, AND 135 MUST BE CHANGED TO DSQRT AND DABS.
CC........ ................. .. .............. ..
C

-. C MM-K+ E
C

DO 100 J-1,K

100 B(J)=O.ODO 110 J-1,K '
Ll1 K* (J-1) ,'ii

DO 110 I-1,K
L-L1+I

110 B(J)=B(J)+RY(I)*RX(L) "-
RM-0.0~ ~BO=O. o'-0

~~Ll I SAVE (MM)-'-
C COEFFICIENT OF DETERMINATION

DO 120 I-1,K B-21 .- '
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C

L-ISAVE(I)
B(I )-B(I)*(STD(L1 )/STD(L))

C
C INTERCEPT
C

120 BO-BG+B(I)*XBAR(L)
BO-XBAR(L1 )-BO

C
C SUM OF SQUARES ATTRIBUTABLE TO REGRESSION

SSAR-RM*D(L1)
CA
C MULTIPLE CORRELATION COEFFICIENT
C

122 RN- SQRT( ABS(RM))
C
C SUM OF SQUARES OF DEVIATIONS FROM REGRESSION '

C
*1 SSDR-D(L1)-SSAR

C* -
C VARIANCE OF ESTIM4ATE 5

C
FN-N-K-1
SY-SSDR/FN

C
C STANDARD DEVIATIONS OF REGRESSION COEFFICIENTS '

C
DO 130 J-1,K
LlUK*(J-1)+J
L-ISAVE(J)

125 SB(J)- SQRT( ABS((R.X(L1)/D(L))*SY))
C
C COMPUTED T-VALUES

C130 T(J)-B(J)/SB(J)

C
C STANDARD ERROR OF ESTIM4ATE
C

135 SY- SQRT( ABS(SY))
C
C F VALUE

C FK-K

SSAftM-SSAR/FK
SSDRM-SSDR/FN
F -SSARM/SSDRM

C '

ANS(l)-BO
A NS (2) -RN
A NS (3) -SY
ANS(4)-SSAR B-22



ANS (5) -FK
ANS(6)-SSARM

ANS(7)-SSDR
ANS (8 )-FN
ANS(9)-SSDRM
ANS(1O)-F
RETURN .%-

END

'4b
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C 3

C SUBROUTINE CROSS

C PURPOSE

C TO FIND THE CROSSCOVARIANCES OF SERIES A WITH SERIES B
C (WHICH LEADS AND LAGS A). " '.-',
C
C USAGE
C CALL CROSS (A,B,N,L,RS)

C
C DESCRIPTION OF PARAMETERS Ii
C A - INPUT VECTOR OF LENGTH N CONTAINING FIRST TIME
C SERIES.
C B - INPUT VECTOR OF LENGTH N CONTAINING SECOND TIME

C SERIES.
C N - LENGTH OF SERIES A AND B.
C L - CROSSCOVARIANCE IS CALCULATED FOR LAGS AND LEADS OF
C 0, 1, 2,..., L-1.
C R - OUTPUT VECTOR OF LENGTH L CONTAINING CROSSCOVARI-
C ANCES OF A WITH B, WHERE B LAGS A.
C S - OUTPUT VECTOR OF LENGTH L CONTAINING CROSSCOVARI-
C ANCES OF A WITH B, WHERE B LEADS A.
C
C REMARKS

C N MUST BE GREATER THAN L. IF NOT, R(1) AND S(1) ARE SET TO WI
C ZERO AND RETURN IS MADE TO THE CALLING PROGRAM.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C DESCRIBED IN R.B. BLACKMAN AND J.W. TUKEY, 'THE MEASURMENT

44..
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C OF POWER SPECTRA', DOVER PUBLICATIONS INC., NEW YORK, 1959.

C
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C
SUBROUTINE CROSS (A,B,N,L,R,S)

DIMENSION A(l),B(l),R(1),S(1)
* C

C CALCULATE AVERAGES OF SERIES A AND B
C

FN-N
AVERA0. 0
AVERBO0.O

- . IF(N-L)50,50,100
50 R(1)UO.,O

S(1)-O.O Jm

RETURN
100 Do 110 I-1,N

AVERA-AVERA+A (I)
110 AVERB"AVERB+B(I)

AVERA-AVERA/FN
AVERB-AVERB/FN

C
C CALCULATE CROSSCOVARIANCES OF SERIES A AND B

C
DO 130 J-1,L
NJ=N-J+1
SUMRO.O0
SUMSO0.O
DO 120 I-1,NJ

IJ-I+J-1
- -*SUMR-SUHR+(A(I)-AVERA)*(B(IJ)-AVERB)

120 SUS-SUS+(A(IJ)-AVERA)*(BI)-AVEB)
FNJ-NJ
R (J )-STMR/FNJ

130 S(J)-SUMS/FNJ
RETURN
END
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100 FORMAT (F5.1,3F8.3)
END

C
C
C
SUBROUTINE PLT (X,Y,N,XMIN,XMAX,YMIN,YMAX) ,i - -

DIMENSION X(201),Y(201),IA(51,51),XLAB(11),YLAB(11)
DATA ISP,IPR,IS/lH ,lH* ,lHX/
20 FORMAT (10X,lH+,80Al)
30 FORMAT (1X,E9.2,1H-,8OAl)
40 FORMAT (10X,2H+,5(1OH .. *H I++I))
50 FORMAT (6X,6E1O.2)
WRITE (1) "START PLOT"
XSP =50.
ysP-XSP
DX-XSP/(XMAX-XMIN) A
DY-YSP/(YMAX-YMIN)

DO 200 1-1,51
DO 200 J-1,51

200 IA(I,J)-ISP
DO 300 K-1,N
I=DX*(X(K)-XMIN)+1.5 i
J=DY*(Y(K)-YMIN)+1.5
IA(I,J)=IPR

300 CONTINUE
DO 400 1-1,51,5
J-I/5+1
XLAB(J)-(I-1 )/DX+XMIN
XLAB (1)-XLAB (1)
YLAB(J )-(I-1 )/DY+YMIN

400 CONTINUE
DO 500 J1-1,51
J-52-Jl
DO 450 11-1,50
12=52-Il
IF(IA(12,J).NE.ISP) GO TO 475

450 CON--:,JE
475 IF(MOD((J-1),5).EQ.0) GO TO 490
WRITE (4,20) (IA(I,J),I-1,I2) ..-.-

GO TO 499
490 WRITE (4,30) YLAB(J/5+1),(IA(I,J),I-1,12)
499 CONTINUE
500 CONTINUE

WRITE (4,40)
WRITE (4,50) (XLAB(I),I-1,11,2)
RETURN
END
UO - .2611597647
AK-37.0
XBAR-0. 0
xSQU-0.0
COUNT - 10000.0
Cl-0.0
C9-0.0
C4-0.0 B-26
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APPENDIX C

-N COMMENT ON STATISTICAL MODELS OF PERFORMANCE

The goal of any performance measurement system is to capture the com-
.-' plexity of the real world while providing concise metrics. When there

""- . exists a lawful relationship between pilot skill level and the performance
variables associated with the pilot-aircraft system, response surface
modeling is a possible alternative. If the measurement variables can be
designed so as to represent a quantifiable continuum on the skill axis,
multivariate statistical techniques become a powerful tool for the develop-

,- ment of response surface models.

Performance models are functions composed of several variables or mea-
sures useful for higher-level decision making or automated program control.
Simply put, these multivariate models could simultaneously combine infor-

*'"" mation more effectively than humans could. The simplest models or func-
tions take the linear form:

Y = blxl + b2x2 + b3x3 + ... + bmxm + E

The Y term is usually the effect that the equation is trying to enumerate
and the b's are weighting coefficients derived by some multivariate analy-
ses using several samples of m number of variables or x's. E represents "
the error term of variance not accounted for by the model.

Assuming existence of a lawful relationship between m variables, there
is . -dimensional surface which describes this relationship, to any error
level, with a polynomial of high enough order. Of course, very high order
polynominals are more difficult to interpret and implement.

A complex version of this method would be to develop and explore a sur-
face model of all the measures taken from the system, before having removed
some of them from the model. In the process of doing this a greater insight
into the inter-relationship of all measures may be gained, (thus reducing
the error of throwing out information unnecessarily) but it could be an
extensive task only recommended if the simpler models are not satisfactory.

If the relationships between all the measures can be reasonable deter-
mined in this manner, then sample size becomes of lesser importance and the

4% extra time expended in the surface modeling phase is repaid several times
over by the abbreviated data gathering segment of the study. In other-
words, time is probably better spent on adequately describing the infor-
mation contained in the data base, rather than accumulating subjects while
attempting to render significance to some small effects in the data.

The performance measurement modeling approach becomes a simple concept
with great user validity. Multivariate statistical techniques are used to
characterize the change in system performance variables as they change with
the experience and training of pilots. Since the performance measures can -.. ,

be taken at various well defined stages in training while performing the

-5 .
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-\ actual task of interest, the performance measurement model is operationally
defined in the field setting. Any error term associated with inter-pilot
differences can be further reduced with the addition of variables to%
account for pilot characteristics, for example: age, sex or educational
experience.

This appendix will discuss the theoretical and practical aspects of
statistical performance measurement modeling by way of the following steps. -

1. Reduction of Dimensionality.
2. Development and Study of Multivariate Relationships.
3. Statistical Issues in the Assessment of Multivariate Models.

Several statistical procedures will be described and their respective
FORTRAN IV programs will be included in this Appendix. Some algorithms
described in the text will not be included in the appendix as they are comr-
monly found in most statistical libraries or only simple modifications to
existing analysis routines.

The discussion in this section relates entirely to multivariate sta-
tistical techniques which have been developed over the years and have been
used successfully on more than one occasion. This is not meant to be a
tutorial on data analytic methods in the broad sense. There will be no
attention given to analysis of time series, and the performance measurement
development procedures used preclude the discussion of any pattern recogni-
tion or multidimensional classification techniques since group membership
is assigned before data collection. The following discussion presumes, in
fact, that pilots can be divided into groups representing various skill
levels and .a set of summary performance variables have been collected on
each while performing precisely the same task. The task should be a seg
ment of a maneuver or procedure under quantifiable conditions (preferably
the same) with well defined initial and terminal conditions.

The following methods seek to develop multivariate performance measure-
ment models that are maximally sensitive to the differences, or discrimi-
nate between skill groups.

REDUCTION OF DIMENSIONALITY

Ideally, the discriminant system should be composed of a small set of
entirely orthogonal or independent variables which, when combined into a
single function, will describe 100 percent of the variance contained in the
data.

Unfortunately, few situations are encountered which provide variables*.
so well behaved. Even with the best of discriminant functions, there
usually remains a small overlap or region of indecision between classifica-
tions. It becomes possible only to reduce this unexplained variance with a.

the best selection of variables. '

In addition, rarely are variables totally orthogonal to each other;
they will be correlated to some degree. This means that the relative

c-2'
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contribution of each variable cannot be directly assessed, but can be
inferred by careful examination of both univariate and multivariate sta-
tistical procedures.

Aircrev data will contain these problems. Many aircraft control vari-
ables are highly correlated, and it is expected that some overlap will .. 1

occur in the control activity that they describe. With these difficulties
in mind, this section will discuss several procedures available to select
variables for the discriminant system.

Data Editing. So far, we have only considered the elimination of
variables from the discriminant system, but the number of samples analyzed
represents another dimension that may suffer reductions prior to compu-

* tation the scores. The controlled reduction of variables in the discrimi-
nant model has some beneficial effects, however, the exclusion of samples
reduces the information from which the system will be developed. It is

- 4
.9 highly possible that outliers (a few unusual performances) may adversely

bias the entire discriminant function and an improvement in fit may result
only from their removal before analysis.

Rules have been proposed for automatically rejecting outliers. Our
experience has shown a significant improvement in discrimination sometimes .
results from the removal of a very small percentage of data. The simplest
of these rules might be to avoid any sample which contains a variable with

- a value more than 3.5 standard deviations away from the mean of all samples.
However, this value can be changed, based on examination of the data.

This is not as risky a procedure as some would suggest, because outliers
will not be ignored in the final implementation of the scoring system. To
avoid applying the discriminant function to performances outside of the
range of data used to create it (a common error of many projections),
outliers can be detected by the same criteria, and nominated for examina-
tion' rather than being subjected to the discriminant scoring. Thus,
outliers will always receive special attention while the remaining perfor-
mances can be scored with a more optimal discriminator.

*Performance measures can be automatically edited, and the results tabu-
lated for further application, prior to any statistical processing. This

* procedure will result in several other fringe benefits, as discussed in
the following sections.

Univariate Selection. In some cases variables can be selected or
* rejected on the basis of their individual ability to classify performance.

Immediately af ter data editing, it is a time conserving step to remove
* those variables which have a trivial relationship to skill change or group

membership. This eliminates wasteful over processing of easily discernable, -7
useless information. Since the final set of variables to be used repre-
sents a small fraction of the initial set, it is a safe strategy to select
a reasonably large starting set without regard to the quality of individual \

distributions or other sophisticated multivariate considerations.
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The rationale behind this strategy is straight forward. Under the
best of conditions, given the variables were to be orthogonal, the portion
of variance each accounted for in the final multivariate model would be
equal to the respective portion they accounted for individually in a uni-
variate model. As their inter-correlations increase, the actual portion
of the multivariate variance they account for decreases from what the uni-
variate models would suggest.

Further, it is suggested to perform the initial screening of variables
before any data are transformed for the following reasons: the criterion
significance level so low that any small difference between groups will
pass the test. The distributions of the variates within each group may be
an issue for this part of the procedure. Should the sample sizes be large 40"
(N > 20) a few factors will work together to improve the robustness of
most univariate statistical procedures for these purposes. A large number
of samples provides a stable estimate of the population. The extreme
tails of any of the distributions have been clipped by the data editing
procedure to improve their normality. Essentially it is at the tails or
higher percentiles that most of the tests become sensitive to fluctuations
in the distributions. We have effectively avoided this problem by only
requiring a minimally significant effect.

Should the sample sizes be small, the univariate distributions are
likely to be ill-conditioned and normal parametric statistics are likely
to provide less reliable information. In this case, some distribution
free or nonparametric analyses may be more reliable. Non-parametric tech-
niques require little or no degrees of freedom which makes them highly
suited for situations with very few observations.

The "Tukey Quick Test of Location" (Bruning and Kintz, 1977; Hays,
1973; Neave, 1979) can be used to assess the significance of any dif-
ference embodied in a measure across skill groups. This test simply
requires the grand minimum and grand maximum for the measure in question
to not be contained in the same skill group. In other words, one group
must contain the minimum for that measure for all observations and the
other group must contain the maximum. The Tukey Test therefore, may have
critical limitations when applied to certain classes of variables; speci-
fically those that could assume a zero value in more than one skill group.
A measure must be subjected to another test if it fails this test. All
the confirmatory occurrences are then counted and "Tukey Counts" are
assigned significance levels similar to t-tests. Experimenter judgment
is used to assign an acceptance or screening level for selecting the most
significant measures.

Our experience has shown that when univariate tests for all the :'.'V
variables are examined many variables are practically invariant in rela-
tion to the dependent variable. Removal of these trivial variables,
usually leaves a sufficient number of 'active' variables which relate to
the dependent variable in significant ways.

For example, if a t-test with a t equal to 0.70 is applied to each of
the approximately 300 performance measures, it may leave 60 significant
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variables. Considering the final set will contain some 15 variables, 60
is hardly a skimpy starting point for more careful examination.

Multivariate Selection Schemes. Once outliers and obviously trivial
measures have been removed from the data base, the remaining performance
measures will be examined with a much finer multivariate screening proce-
dure. First, in the same vein as removing trivial variables, it is
important also to remove very highly correlated dependent variables.

the final set of variables in the discriminant function will be
determined by step down discriminant procedure which removes those
variables which account for the least variance in the discrimination.
These two procedures are described in the paragraphs that follow. .".:.

Elimination from the analysis is suggested for one measure from a
near-perfectly correlated pair, since they practically describe the same
aspect of the function. By near-perfectly correlated, we mean pairs of
variables with correlations greater than .98. This criterion can be £
adjusted for pragmatic consideration related specifically to prior
knowledge about those specific return characteristics or the effect that
the variables removal may have on the power of the discriminant function. %
To insure the least impact on the function, only the variable in the pair
which correlates most with every other variable in the system will be
removed. The least information will be lost as a result of this strategy,
since only the variables that have the most discriminant information
in common with all the other variables shall be removed. Another benefit
of this procedure is to improve the condition of the correlation matrix
for the discriminant analysis; the importance of this is described in the
subsection called 'discriminant analysis'.

With all of the data preconditioning complete, the step-down discrimi-
nant analysis is performed. Discriminant analysis is iteratively per-
formed, removing measures which contribute least to the model.
Communality (Cooley and Lohnes, 1971) is therefore the criterion for
retention in the model. Control of this process is done by varying the
minimum communality allowed, and by initial inclusion of measures at the
start of the process. The software also is designed to force the inclu-.
sion of variables into the function at the discretion of the analyst.

DEVELOPMENT AND STUDY OF MULTIVARIATE RELATIONSHIPS

Discriminant Analysis. Discriminant analysis is useful for reducing a
multivariate problem to a linear function of the variates which maximizes
the difference between populations:

l=blxl+b2x2+b3x3+. • .+bnxn.

In review, multiple discriminant analysis projects data points from
their initial measurement space into a suitable subspace. This subspace
is univariate and usually referred to as discriminant space. The discri-
minant model determines those components which best separate the groups in V..
measurement space, and weights them to maximize this difference in discri-
minant space. The geometric interpretation of discriminant analysis can
be seen, for the case of two groups and two variates, in Figure 1.
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In Figure 1 can be seen two partially overlapping bivariate-normal
scatter diagrams projected onto a new axis 1. The two new overlapping,%
distributions represent the two groups projected onto an arbitrary discri-
minant axis. The degree of overlap can be manipulated by varying the
discriminant coefficients used to transform the multivariate points onto
the resulting discriminant axis. The objective of discriminant analysis
is to find a set of coefficients which minimize this projected overlap for

two or more groups consisting of many normally distributed variables.

It makes no difference to the formal logic of the discriminant model
whether the variates in measurement space are the dependent variables and ....

the discriminant function is the independent predictor vector, or the
groups consist of independent treatment variables and group membership is
the dependent variable vectors. For example, in the case of performance
measurement development (Vreuls, D., Wooldridge, L., et al., 1977) the
groups represented relative skill levels of pilots composed of dependent
and uncontrolled performance measures and the group membership was the
only controlled independent variable. In this case the return charac-
teristics will be the dependent or uncontrolled variables and the group
membership will be an 'a posteriori' controlled independent variable. ,-.-

Violation of Statistical Assumptions. Often, pilot performance meas-
ures are not collected with carefully designed experimental conditions,
and the measures are not specifically intended to be independent variables,
nor are they expected to have normal (Gaussian) distributions.

Non-normal distributions can be detected and rectified by using the
appropriate standard, normalizing transformations. In particular, error
measures usually have Poisson or Weibull Distributions (Gibra, 1973).
Unequal dispersions are quite common and can also be favorably corrected
with square-root or logarithmic transformations. Care will be taken so as
not to unnecessarily degrade any discrimination by using a transformation
on an obviously non-normal distribution. It is our goal to provide the ..

most stable and optimal discrimination rather than to satisfy rigorous
statistical principals. In some cases, two groups with very different U
centroids and narrow dispersions discriminate more effectively than if
there dispersions were flattened to satisfy arbitrary requirements of nor- .*
malcy. There is a tradeoff to be made between functional utility and com-
putational complexity and rigorous stastistical theory. It also may be
possible to suggest two variable transmutations which would show important
interactions between performance measures.

Correlations between the dependent variables are a more stubborn and
subtle problem which can dramatically effect the results of a multivariate
analysis. The correlations usually are not a result of any causal rela-
tionship between the predictor variables.
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When the predictor variables are correlated with each other, the
intercorrelation matrix will have non-zero correlations in the off-
diagonal positions. A hypothetical intercorrelation matrix for the A
discriminant situation appears in Table 1. This table can be broken into
three parts: (1) the predictor matrix of correlations among each predictor
variable and every other predictor variable; (2) the diagonal of the matrix
which is the correlation of each predictor variable to itself; and, (3) the
group membership row vector of correlations between each predictor -
variable and group membership.

Note that since each predictor variable correlates perfectly and posi-
tively with itself, the diagonal values are all one. Since the off-diagonal ,
elements are not zero, the matrix is said to be ill-conditioned and the
original experimental design is classified as non-orthogonal.

A multivariate least-squares regression, as well as a multivariate AD
discriminant analysis, will both suffer from similar failings when applied
to data characterized by an ill-conditioned intercorrelations matrix.
Indeed, there is a popular contention that the regression and discriminant
models should always find the same solution for any given data. It has
been suggested that any notable differences are due to computational
problems. The author feels that the regression criterion behave somewhat

(Y-Xb) '(Y-Xb)
Min

and the discriminant criterion

b'Ab Max
b'Wb

differently under adverse conditions. Should the groups have significantly
different shapes, be non-normally distributed or be non-orthogonal, the two
criteria may result in quite different discriminant models. Until this .. .
relationship is mathematically or practically proven, we reserve the right .
to discuss the two methods as different, yet analogous, procedures. For
the time being, it is this analogy that is of critical importance.

Users of either analysis technique, McDonald and Schwing (1973) for
instance, have noted certain instabilities in the resulting ordinary coef- .' .r
ficients when analyzing non-orthogonal systems. Some coefficients have
extreme magnitudes or incorrect signs resulting in linear functions that

UD respond unsatisfactorily when supplied with new data. This erratic behavior
was also noted in the Vreuls and Wooldridge (1976) performance measurement
study when new pilots were obviously misclassified by the normal discrimi-
nant functions.
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. Hoerl and Kennard (1970) suggested adding a small positive quantity,

k, to the unit diagonal of the intercorrelation matrix, X'X, of the pre-
dictor variables in regression analysis. The conventional least-squares
fit is done using this new matrix to produce what are called 'ridge' coef-
ficients. The standard regression

b - (X'X)-lx'y

becomes b - (X'X + kI)-lx'y

where I is the unit diagonal matrix.

The 'ridge' comes from the fact, that as k increases, the variance
error decreases more rapidly than the bias error increases. As can be
seen in Figure 2, for some value of k, the sum of the bias error and
variance error (the mean-square error) is minimized and smaller than it
would be for the conventional coefficients. Although the 'ridge' can be

. mathematically demonstrated to exist, little success has been made in
calculating a specific value of k that minimizes the mean-square error.
Lindley and Smith (1972); Mallows (1973); and Farebrother (1975), to name
a few, all suggest various mathematical criteria for selecting a value of
k which would improve the set of coefficients without unduly biasing the
estimate.

Hoerl and Kennard did not feel that a mathematical solution for
selecting the best k was justified. They proposed visual inspection of
the 'ridge' trace. Figure 3 is an example 'ridge' trace. This plots the
change in regression coefficients various values of k between 0 and 1. -

The following conditions should be looked for when selecting the value
of k (in lieu of a mathematical formula):

1. The beta values and particularly their orders of magnitudes have
begun to stabilize.

2. The coefficients no longer have unrealistically large absolute
values.

3. The coefficients with logically incorrect signs are approaching or
have reached the proper sign. .. .r.

4. The residual sum-of-squares is not unreasonably inflated.
.. '... ,a..

5. The ridge trace (representing the mean-square error) is smaller
than the unbiased least-squares variance.

Mathematical Rationale for 'Ridge' Regression. Hoerl and Kennard (1970a)
were able to mathematically demonstrate the existence of the ridge estimator
for regr ssion by calculating the expected value of the squared distance

IV between'u* and B. 0 is the vector of the true regression coefficients and
;0" is the 'ridge' estimates of S. The reader is directed to the popular ...r
Hoerl and Kennard paper for the derivation of expected ,alue function
E [L2 (k)]. Let us only say that an existence theorem can demostrate that,
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Figure 3. Example Coefficient Trace (Hoeri and Kennard).
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although the derivative of E [L2(K)1 is positive as K approaches , there
* always exists a K>O such that dE [L(K)] / dK<O. This describes the pro-

perty of E [L2(K)] of always going through a minimum as K goes from 0
to . Appropriate values of K have been looked for by various solutions to

. the first derivative of E [L2(K)].

'Ridge' Discriminant Analysis. Development of a similar expected
value function for a 'ridge' discriminant analog has never been done to
our knowledge. The best we can offer is an intuitive discussion of the
existence of the 'ridge' discriminant adjustment:

In review, discriminant analysis attempts to maximize the criterion,

b'Ab

Finding the smallest eigen value of W to maximize A is reasonably com-
parable to finding the largest eigen value of W'1 A used to solve
(W-IA- I)b-O. The smallest eigen value of W, X 1, would be very 'small' if
two or more experimental variables were correlated. Then if b were chosen
to correspond to X, of W then,

b'Wb-b'(Wb)=b'(X 1 b)-X 1 b'b=X1,

* since b'bAl. SinceX 1 is 'small', b'Ab is very 'large'. Undesirably, the

* solution would disregard or be insensitive to the values found in A.
Somewhat larger eigen values of W would be more desirable. One way to
force the eigen values to be larger is to replace W with W+IK, where K is
a small scalar. Then,

b' (R+IK)b-XI+K.

Now, regardless of how small the smallest eigenvector of W is, the size of
I+K can be no smaller than K. K being of reasonable size, b'Ab would not " - - -

X I- K
. be as large as b'Ab. In maximizing b'Ab , A would determine more of

"'A 1-- b' (W+IK)b.'V .
b's direction than before. Thus, a very small bias, K, would have the
beneficial result of improving the sensitivity of to values found in A.
Again, as in 'ridge' regression, there is a trade-off between bias error
and variance. It has been demonstrated that the adjusted discriminant

:-. function has similar minimizable properties as in the case of least-squares
regression. A simulation would also be expected to demonstrate these pro-
perties.

Predictably, one characteristic of the 'ridge' discriminant analysis
will be quite different from that of the regression version. Usually, the

* regression case requires only very small values of K, much smaller than 1,
C.- usually less than 0.1, to minimize E [L2(K)]. The mathematics of the

situation suggests that the discriminant analysis may require adjustments
much larger than those typical for regression.

"C-13
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As was previously discussed, several researchers, when using 'ridge'
regression, have chosen values for k based on a wide variety of mathemati-
cal or pragmatic criteria. The lack of a rigorous mathematical tool for
choosing the value of k for discriminant analysis required the development _
of a Monte Carlo simulation to demonstrate the effectiveness of this new
'ridge' procedure (Bittner 1974).

Using simulated data, the percentage of classification error could be
calculated for various values of k. Thus providing an immediate indica-
tion of the relative improvement in the discriminant function associated
with each value of k. This simulation technique, on the other hand, can
provide pseudo-empirical evidence for the selection of a near-optimal
discriminant function for any sample simply by finding the minimum classi-
fication error as the value of k increases from zero. Rather than base a
decision on a highly contestable mathematical assumption, a data simula-
tion should be incorporated as the criteria whenever using a 'ridge' ana-
lysis. The specifics of the Monte Carlo simulation will be more fully
described in the subsection entitled -'Reliability Test'. Figure 4 shows
the simulated misclassifications for a discriminant system developed for
the air force (Wooldridge, 1980) over several values of k, note the simi-
larity to the hypothesized ridge in Figure 2. The appropriate value of k
is very apparent. Figure shows the functional flow of a suggested 'ridge'
discriminant analysis.

Distribution Free Discriminant Analysis. Nonparametric technique-
overcome some of problems associated with ill-conditioned distributions
or a large number of measures to sample ratio. The resulting discriminant
systems would not require the additional variable transformation step
associated with the parametric models. The following paragraphs discuss. 0
three possible techniques.

The term unit-scaling is used to describe a model using the unit
weighting technique with full excursion scaling as opposed to unit normal
scaling. The predictor variables are scaled by their sample range after
they have been translated by the subtraction of the sample minimum. S
Thence, the predictor variables are relocated as well as scaled. Although
not mathematically required, the translation is performed for convenience
of interpretation. The resulting model values for n variances will lie
between zero and n. For a set of n raw measures the unit scaling equation
would take the form:

alxlpMin1 + a2x2-Min2 + . + anxn-Minn
range1  range2 rangen

where a is the unit direction variable, Min is the sample minimum and
range is the sample maximum minus the minimum.
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The sample location provides no useful information, so that for either
unit weighting or unit scaling, the predictor variable could be relocated
in the same manner. Disregarding the sign variable and the relocation,
the comparable coefficients become "+" respectively. The primary dif-

•" ference

I and 1
sigmam  rangem

between the standard deviation and the range is that the latter is totally
unaffected by the shape of the sample distribution. This feature provides
more latitude in the application of the equal weighting scheme.

Given a set of scores for each group, the significance of the dif-
ferences (F) and the percent of variance accounted for by the model (R

2)
can then be calculated. These statistics coupled with the Monte Carlo
Simulation, mentioned earlier, provide a metric of the successfulness of
any resulting model (Wooldridge and Helms, 1976; Vreuls and Wooldridge,
1981).

Unit weighting (Wainer, 1976; Winter, 1974) is particularly useful
when the number of measures under consideration is very large relative to
the number of data points. It provides a conservative (non-optimal)
discrimination which does not suffer from shrinkage as severely as para-
metric methods do, and the analysis does not consume any degrees of
freedom. In some instances, where multivariate distribution assumptions
are violated, this technique can out perform the elaborate parametric
techniques.

Once a parametric discriminant function has been determined a non
parametric function can be easily computed for the same variables and can
be used as a benchmark for comparison.

Reliability Tests. Along with mathematical indicators of signifi-
cance, the probability of misclassification can be estimated using a Monte
Carlo simulation or a cross-validation of the system using actual perfor-
mance data. The following paragraphs describe the procedures that can be
used.

Mathematical Basis for Monte Carlo Simulation. As a first consider-
ation, the simulated data must have a multivariate distribution much like
the original sample. For the most part, the tax return variables in the
analysis have already been transformed and are expected to be normally I
distributed. This mixture of distributions will be satisfactorily simu-
lated with random vectors generated from a multivariate normal population.
Since the interrelationships existing in the performance measures is the
undesirable characteristic responsible for the development of 'ridge' ana-
lyses, it is crucial that the same variance-covariance structure of the
data be represented in the simulation. Thus it is important not only to
simulate a multivariate normal population, but also to be able to specify ',
the variance-covariance matrix of the population.

C- 16
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Scheuer and Stoller (1960) suggest a method for generating random vec-

tors from a multivariate normal population with a specified variance
i covariance matrix based on matrix equations. To simplify description of

the technique, it will be assumed at first that the mean of the random
vectors is zero. The result is no loss in generality, for a vector x with
a mean of zero and a variance-covariance matrix E , the vector x+li has the
same variance-covariance matrix Z and mean vector 1'. It is then possible
to concentrate on generating a random vector x-(xl, x2, ... xn) from
N(O,E), the multivariate normal distribution with mean vector zero and
variance-covariance matrix:

ile ... ta rdeid cs

Let y be distributed N(OIn), where In is the unit matrix of size n, .
and let x-Cy. Then x is distributed N(O,CC'). It is required that CC' be
equal to E in this case. The matrix C is unique and readily determined if
C is lower triangular. The elements of C are determined recursively as -

follows : "

el j l Ci, i < n ,

J i-i

iij E CA Ci lj, I < j <i n
'J k- i

C i < n.

I-.....-.C

This technique is referred to as the "square root" method and C is the".-'
"square root" of E. ..-

Once C has been determined, x is obtained by

xi  CiJyj, i=,..,n

where Yl, ."Yn are independent standard normal variables, N(O, 1).
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Box and Miller (1958) suggest a method for computation of random nor-
mal deviates. This approach has been shown to be more accurate than other
known methods for generating normal deviates from independent random
numbers: (1) the inverse Gaussian function of the uniform deviates, (2)
Teichroew's approach, (3) a rational approximation such as that developed
by Hastings, (4) the sum of a fixed number of uniform deviates, and (5) .-"
rejection type approach.

The method may be used to generate a pair of random deviates from the
same normal distribution starting from a pair of random numbers. Letting
U1 and U2 be independent variables from the same rectangular density
function on the interval (0,1),

Y,- (-2 Loge U1) COS 2TU2 and

Y2 - (-2 Log e U01j SIN 2ffU 2  LA
provides a pair of independent random variables, (Yl, Y2), from the same

Y2), fro th*ae,./.

normal distribution with mean zero, and unit variance.

The new random vector x can now be computed given the originalp and
4~ ~as

xij Yi

A simulation program computes a thousand new independent random vec-
tors for each group with the same means and variance-covariance matrix as
the actual returns and classifies them as to their respective populations
using the chosen discriminant function. The resulting misclassifications
can then be used to compare discriminant functions by calculating their
respective percent error of classification. An acceptable criterion was
also developed to optimally classify vectors for each discriminant
function.

The score s will be calculated by:

blx1 + b2x2 + b3x 3 + ... + bnxn,

where the b's are the discriminant coefficients for n number of perfor-
mance measures or x's. In other words, the b's make up the discriminant
function for the sample vector composed of n number of x's. a is now a
new variate in discriminant space belonging to one of two distributions in
this case. The cost function can be derived using the score distributions
in discriminant space of the sample used to empirically develop the dis-
criminant function, a. There will be two of these distributions: il and
12. Any single score, s, will then fall somewhere in these distributions,with probabilities of Pl(S) and P2(s). -
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In classifying s as belonging to distribution Ir 1 or 12, two errors can
be made. If s actually belonged to distribution I1r, an error would be
made if s was classified as belong to q2 (see Figure 5).

On the other hand, s could belong to q2 and be classified as belonging
to Irl. There is a cost associated with each type of error. Let C(2/1) be
the cost of the first type of error and C(1/2) be the cost of the second.

2 Table 2 is a logic table of the costs of correct and incorrect classifica-
tion. It follows, that an effective classification scheme should minimize
the cost of classification.

TABLE 2. CLASSIFICATION

Wl in2

Actual W1 0 C(211)

Membership w2 C(112) 0 -* '5,

If we select a score, s, in discriminant space, the potential cost of
using that point for classification can be estimated. The probability
that s will be classified as belonging to 'W2 even though it belongs to

P(21 l,s) - P (s)ds.

S ' . "

Given that we already have an actual sample distribution where the number
of observation in ql, nl, is known and the number of scores less than s in
1 can be summed as ml,

P(2 l,s) - n -i M.
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The probability of misclassification of an observation from q2 is then

S
P (1 2,s) f f P2 (s)dsi= 1 -n2  m2 .

where n2 is the number of observations in 12 and m2 is the number of
scores in 12 less than s.

The probability of a 1 pilot achieving a particular score, s, is
Pl(s). This probability can be calculated using the number of obser-
vations in 12 falling in the period of integration bounded by s, ms,l,
divided by n1 or simply

pl(S ) .m

Thus, the probability associated with misclassifying a score from
'" I is

P (s)P(2 1,s) or m n1 -im

- n n

and the probability of misclassifying a score from 12 is

P2(s)P(lI 2,s) or ms, 2 ( 1 - n2

The average or expected loss from costs of misclassification is the
sum-of-the-products costs of each misclassification multiplied by the pro-
bability of its occurrence;

C(21 1)P(21 1,s)Pl(s) + C(l 2)P(11 2,s)P 2 (s), or

C(2 1) n1 - in i + C( 1 2) 1 2 ____

14 1~ Sl 2 n2 -s.2

If C(11 2) , C(21 1) 1 1, the expected loss is

nli- m m 5  + ( - n2  m2 i.,_
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Assuming I and 12 are normally distributed, for a given score s, the
probability of misclassification is minimized by assigning s to the sample
that has the higher conditional probability. Thus, the rule is:

ql is chosen if n l n2 - m2  ms,2
nI  n, n 2  n 2  %'

and 2 is chosen if n1 - m1  s,1 <  2n2 - m2  s,2

n n (n 2  n2

This line of reasoning follows closely the derivation put forth by
Anderson (1958) for discriminant classification criteria. For out pur-
poses, it suffers from two fatal problems. First, the computation of
Pl(s) and P2(s) relies on the arbitrary determination of a period of
integration. Since these values can change directly with the length of
the integration period selected, the cost function itself becomes a
problem to define. Secondly, the distributions to be analyzed are known
not to be normally distributed. This upsets the decision rule described
above.

A slight departure from these results provides a practical decision
algorithm for realistic data analysis conditions. Assuming that the
intrinsic cost associated with misclassificaitons of both kinds is still
1, the total probability of misclassification for any s provides a rela-
tive metric for comparison. The total probabiltiy of misclassification is

P(l 2,s) + P(2 l ,s) or n, - mi + 1-n 2  m
n 

n

For an existing sample, P(l 2,s) and P(2 l,s) are simply the percen- .
tage of misclassifications of 'il and q2 respectively. Their sum is the b

total percentage of misclassifications for s in discriminant space. Given *

a sample, this total percentage can be evaluated along the entire discri-
minant space to locate the minimum error that will occur somewhere between
the means of 'i and 12. The value in discriminant space where the minimum
error occurs will be called the break even point.

Several potential discriminant functions can be derived for each
sample of data. A classification criteria for each function can be deter-
,mined by finding the break even point using the sample discriminant
scores, and the discriminant functions can then be compared using their
respective percentage of classification errors on generated independent
variates resembling the original sample. This simulation can lend itself
to the selection of K in a 'ridge' discriminant analysis as well as to the
estimation of the power of the final discriminant function. Figure 6
shows the functional flow for the Monte Carlo procedure.
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Cross-Validation of Discriminant Function. There are some extremely
sophisticated, iterative cross-validation procedures suggested by the
literature (Mosteller, Tukey, 1977). Considering this limited number of
observations usually available in most development studies, the efficacy of
many of these methods would have to be questioned. A double crossvalidation
procedure is advisable when the sample size is sufficient. This procedure
will require that 10 percent of the data from each group be set aside
before any statistical analyses or processing and used only for testing
purposes. This will assure that the return data is different or indepen-
dent from those used to guide the choice of the functions form and from
those used to choose its numerical coefficients. The reserved samples will
be inserted into the discriminant system and the results will be computed
much the same as the simulation test.

STATISTICAL ISSUES IN THE ASSESSMENT OF MULTIVARIATE MODELS

How much data constitutes a sufficient sample of performance? This
question continually haunts most researchers. In fact, scientists are
often classified as to their preferred criterion of sample size. On one
hand you have those that pursue the 'holy grail' of statistical signifi-
cance at any cost. On the other hand, there are those who shun conven-
tional hypothesis testing and prefer to describe the complete environment
with holistic response surface techniques; requiring many variables and few
observations. It is important to remember for the purposes of this
discussion that we are not so interested in the assessment of performance
as we are in gauging the relative effectiveness of measures and measurement
systems. The practical significance of the improvement between an existing -

measurement. system and any new system in describing measurement space is
the final judgment to be made. This section is confined to the intelligent
estimation of the confidence with which a resulting measurement system can

- . be applied rather than, purely, the achievement of statisitical signifi-
cance.

Power and Significance. The validity of a measurement model cannot be
assessed by statistics, but depends on the adequacy of sampling, and the

* quality of the data collection and analysis (Simon, 1981). Tests of signi-
ficance, when properly employed, estimate the probability of mistakenly
rejecting the null hypothesis, or Type I error. It is not unusual that a
researcher accepts a hypothesis based solely on indications of an F-test or .--

t-test. It has also been a practice to force statistical significance by .
increasing the number of samples, by changing the parameters of the test,
or selecting another form of test.

Unfortunately, even under the best of conditions tests of significance
provide little interpretive information. Inferential statistics tend to

A concentrate on Type I error and ignore the risk of committing Type II
errors. In other words, experimenters using significance tests often do
not weigh the risk of saying there is no effect when, in fact, there is.

When designing measurement systems it is important to weigh both risks
in the interpretation of effects. The need for additional data may be the
most important determination. This is where the concept of statistical
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power comes in. The power of an inference is computed as 1-B, where B is
the probability of committing a Type II error. Textbooks, conventionally,
describe ways to compute the power of the F-test and plot the operating
characteristics based on sample size. Selecting a sample size is then
merely a problem of weighing the cost of increasing the number of obser-
vations against the costs of the Type I and Type II errors expected. The
underlying problem with this seemingly simple concept is that the variance
of the groups must be known in advance of the study. At the onset of a
measurement development study the behaviour of the variables and measure-
ment systems in their particular operational setting are not well defined.

The study design must, therefore, be adaptive to allow estimation of the
variability of the performance measurement systems, the resulting power of '.-"

the statistical inferences derived, and the cost effectiveness practicality
of collecting more data.

In the back of this appendix contains subroutines for calculating the
probability and the power of the F-test. When computing the power of the
F-test (Woodward and Overall, 1976) it is important to determine the non-
centrality parameter

* n E Tj2  (Winer, 1971)

2 where Xj - u + Tj + Eij.

E

under the hypothesis that

T, = T2 = ... - Tk 0 0, it follows that = 0 and the distribution of the
F-ration has the central F distribution. When = 0 the distribution is
noncentral and depends upon the parameter

Another comparable method for computing power is to employ the multi-
variate effect size: Suggested by Shaffer and Gillo (1974):

ES = -." "

using the correlation ratio, Cr. The discriminant analysis program deve-
loped by Cooledy and Lohnes (1971) calculates the correlation ratio:

RJ2 -j

where j is the eigen value of the jth discriminant function. The
correlation ratio suggested by Shaffer and Gillo is

Cr- Tr BWp+T r(BW-)

where Tr(BW-1) is the trace of the product of the within and between groups
sums of squares and cross products and
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p is the number of roots. Cr is equivalent to the R2 above for the
two-group case. This fact allows us to side step, for the case of measure-
ment system development, discussion of the controversy over the calculation
of R2.

Nevertheless, a desirable sample size can be determined from the resulting
ES using tables developed by Cohen (1971). -.

Shrinkage. In review, the correlation ratio, R2 , estimates the pro

portion of variance explained by the predictor variance. The correlation
ratio is an extremely useful interpretive tool, but it is also affected by
sample size. If the number of predictors/measures M is apprecIfble, rela-
tive to the number of observations N, the sample value of R is biased
upward. Several adjustments are suggested in the literature (Lane, 1971)

\2 2
RWherry TlR (~l

N-Lord = 1- (l-R 2 ) N -I

_M J 1-N2 . .-. :Darlington T - ( .. .. 

It is suggested by Cohen and Cohe. (1975) that particularly for step-
wise regression the adjustment for R should be:

/_\22) (N-l1R 1 - (1-R2  :
1-(1-R) N-k-lJ

where k is the total number of measures from which the selection was made.
In the case of stepwise regression, where measures are chosen one at a
t -! on the basis of their relationships with Y, R will tend to be too
large because of the tendency of the stepwise procedure to capitalize on
chance..

Research using the various correction formulas has shorn that as the A£k

ratio of measures to observations increases the adjusted R becomes less
meaningful. There is no single solution that satisfies all conditions.
Stepwise procedures are particularly susceptible to error as the large
number of initial variables are not amenable to conventional multivariate
selection techyiques. As the number of measures is severely reduced, the
shrinkage of R is directly related to the M/N ratio and all the suggested
corrections perform equally satisfactorily. The simulator techniques
discussed earlier can be used in conjunction with the adjusted correlation
ratio to judge the effectiveness of the measurement system.

Repeated Measures. Conditions in the operational environment often

cause the empirical researcher to violate traditional experimental design
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standards. In training and performance measurement studies it is often
necessary to collect data on the said trainees both before and after
training. Repeating measurement of each trainee for each level of training
may also be required when the population of trainees is sparse in relation
to the total number of candidate performance measures. These data collec-
tion procedures violate both the within groups and between groups assump-
tions of independent observations.

Various methods for adjusting scores for repeated measures have been
proposed, although Weinman (Wooldridge, Breaux and Weinman, 1976) developed "r:7-
a theoretical model that consumes the least degrees of freedom. The rest -
of this section will be devoted to discussion of Weinman's conservative
model.

Consider that each trainee/subject was observed repeatedly in each
* training condition or group for every group. Let Xmijk be the score on -

measure m, in group i, subject J and trial k. A model for such a score
can be stated as

XmiJk v m +aci +aj + (aa)ij + k(i) +6ajk(i)

where:

pm - grand mean of measure over groups, trials and subjects,

ai group effect,

aj subject effect,

ak(i) - effect of trial within group i,

(aa)ij - interaction effect for subject j and group i,

(Sa)jk(i) - interaction effect for subject j and trial k on group i. I

Estimates for these parameters and the degrees of freedom associated
with each are:

.m

-i - Xmi-- - m'..
"I

8) XmJ " - Xm 'J .. ' X .. ",-.-.
.*cik(i) - i-k - i.

( ct)jk(i) " Xmijk - Xmij, - Xi.k + Xmi..

where the dot (.) replacing a subscript indicates the subscript being
summed. To keep sufficient degrees of freedom, it is necessary to assume
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the interaction effect for subject, trial and day, ( )jk(i), to be always

zero. The effects ji, k(i), and ( )ij can be estimated and removed
from the scores Xmijk

The program in the appendix replaces each score with X'mijk where

X'mijk - Xmijk - Xmi.k - Xmij. + 2Xmi..

The new scores can be used in further multivariate analyses.

There are a few drawbacks to this approach. First, the model is very -.

sensitive to outliers or instability in the data, due to the requisite
assumption of the nonexistent three way interaction on no error term.
Secondly, the power of the resulting measurement system is somewhat dif-
ficult to estimate, as the actual degrees of freedom are unknown after the

removal of portions of subject variance. The degrees of freedom could -

range anywhere from one less than the actual number of subjects (in which 7-

case little power has been gained by the repeated measures design) to one
less than the total number of observations per group (assuming groups of

equal size).

1, 4
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PROGRAM C-1. TUKEY QUICK TEST OF LOCATION AND T-TEST. *-

This disc-bound version of the TUKEY test was written for an extremely
large number of initial measures (up to 1000).

SUBROUTINE SSATUK (OPTN,SIGLVL)

CThe TUKEY test is a nonparametric (or distribution free) statistical
C test. This program computes the Tukey test or the student t-Test for
C two groups of data and the associated significance levels.
C
INCLUDE 'SSA.DEF/NOLIST'.*
C
REAL MINi ,MAX1,MIN2,MAX2,MINP,MAXP "
REAL YMEAN(2),YSD(2),YSUM(2),YSQSM(2)
INTEGER TUK,OPTN,SIGLVL
LOGICAL*1 GEORGE
COMMON/POOL/ MINP,MAXP,MING,MAXG
C
CLOSE(UNIT-TEMP1C,DISP-'SAVE') E
OPEN(UNIT-TEMPlC,NAME-'TEMP1.SCR' ,ACCESS-'DIRECT' ,ASSOCIATEVARIABLE
1=KK,TYPE='OLD' ,FORM='UNFORMATTED' ,RECORDSIZE-24)
C
C Determination of the significant measures.

KK - 1 ! Reposition Scratch file to Grp 1.
KNT1 - 0
KNT2 - 0
KKK - KK
LVLS - 1000 !A standard to compare to.
REWIND WORKC
READ (WORKC) NUMG
READ (WORKO) NMEAS
JGRP2 - 2*NMEAS
IF (OPTN .GT. 4) WRITE (LPOUTC,1000)
1000 FORMAT('l "t-Test" results ' Measure',12X,'t',

0. 16X, 'Significant?')
DO 50 I 1,NMEAS
READ(TEMPlC 'KK) XBAR1 ,SD,NMOBS1 ,PSUM,RANG,VAR1

DREAD(TEMP1C'KK) KNT1,MIN1,MAX1,MINP,MAXP
DWRITE(5,957) XBAR1,SD,NMOBS1,PSUM,RANG,VAR1

D WRITE(5,937) KNT1,MIN1,MAX1,MINP,MAXP
937 FORMAT(lX,I4,4(Gl3.6,1X))

KK - JGRP2 + KK
READ(TEMPlC 'KK) XBAR2 ,SD ,NMOBS2 ,PSUMK,RANG,VAR2
READ(TEMP1C'KK) KNT2,MIN2,MAX2,MING,MAXG ! Get the Grp2 data.

- . D WRITE(5,957) XBAR2,SD,NMOBS2,PSUM,RANG,VAR2
D WRITE(5,917) KNT2,MIN2,MAX2,MING,MAXG
917 FORMAT(lX,I4,2(lX,G13.6),2(lX,I6)) .

C
C Calculate the Degrees of Freedom for both Grps and for pooled.
C

Xl -NMOBS1 C-34
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DF1 NUMG- I
X2 - NMOBS2
DF - Xl + X2 - 2.0
IDF - DF
REC -(1.0/Xl) + (l.0/X2)

C
C Compute the "t"* level of significance and save.
C

DENONT - SQRT ((VARL/Xl) + (VAR2/X2))
IF (DENGIT -EQ. 0) GO TO 10 !Prevents "Floating Zero Divide" error.
GO To 20

10 T-l1.0
GO TO 30

20 T - ABS((XBARl-XBAR2) /(DENONT))
30 KK - JGRP2 + KIK

TUK - 0
WRITE(TENP1C'KK) XBAR2,SD,TUK,T,RANG,VAR2 !Save the "t" stat

D WRITE(5,957) XBAR2,SD,TUK,T,RANG,VAR2
957 FORMAT(lX,2(IX,F1O.5),lX,I5,3(lXG13.6))

IF(OPTN .LT. 5) GO To 40 !Loop for TUKEY.
GEORGE - TSTSIG((T*2.O),IDF,SIGLVL) !George is a logical.
IF (GEORGE) TUIC - 1000
KK -JGRP2+ KK
WRITE( IEMP1C'KK) XBAR2,SD,TUK,T,RANG,VAR2 !Save in Grp2.
WRITE (LPOUTC,1lO0) I,T,GEORGE

1100 FORMAT(lX,I7,2X,G13.6,6X,L6)
D WRITE(5,957) XBAR2,SD,TUK,T,RANG,VAR2
40 KK 2*1+ 1
5KKK KK
50 CONTINUE

C
TTST - .05 

6

*IF (OPTN -EQ. 2) TTST - .01........--------
IF (OPTN .EQ. 3) TTST - .005

-' C

C The relative position of one group and the other should be the
C same for all measures. This is determined by checking the value
C of the Means and correcting as necessary
C

KIK 77

D WRITE(5,999)
4:999 FORMAT('O SSATUK -- Entering Do 80 '

DO 80 J - 1,NMEAS
READ(TEMP1C'KK) XBARI ,SD,NMOBS,PSIUM,RANG,VAR1
READ(TEMP1C'KK) KNT1 ,MIN1 ,MA6X1,MINP,MAXP
KR - JGRP2 + KKKK
READ)(TEMPlC'KK) XBAR2,SD,TUK,T,RANG,VAR2
READ(TEMPIC'KK) KNT2,MIN2,MAX2,MING,MAXG
IF (ThAR1 .LT. XBAR2) GO TO 60 ~.
GO To 70

C
C The negative sign on the integer count variable will be used
C to adjust for differences in position.

C C-35
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60 KNT2 - -KNT2
70 KK - JGRP2 + KKK

WRITE(TEMPlC'KK) XBAR2,SD,TUK,T,RANG,VAR2
WRITE(TEMPlC'KK) KNT2 ,MIN2 ,MAX2,MING,MAXG
KK 2*J + 1
KKK KK

" 80 CONTINUE
S.-, C
* 5 MESUSD 1 ! The count of the measures used.

KK - JGRP2 + 1
D WRITE(5,997)
997 FORMAT('O SSATUK -- Entering DO 90 '

DO 90 J - 1,NMEAS E
'- READ(TEMPlC'KK) XBAR2,SD,TUK,T,RANG,VAR2

READ(TEMPlC 'KK) KNT2 ,MIN2 ,MAX2,MINP,MAXP
IF (TUK .GE. LVLS) MESUSD = MESUSD + 1 AM

90 CONTINUE
7: ,"

D WRITE(5,981) MESUSD
981 FORMAT('O MESUSD - ',15)

. IF (OPTN .GT. 4) GO TO 230 ! Use "t" significance.
C
C Since this is the TUKEY Procedure, we have to count the # of X's
C from the Grp having the lower Mean that are below the minimum X in the
C Grp having the higher Mean. Then we count those X's from the Grp
C having the higher Mean that are above the Max X of the Grp having the
C lower Mean. Confused?~c
C The probability equation is:

C
C 2 * XTMP ( XTMP ** TUK-I )
C P(TUK) ------------- * --------------------
C XTMP**2 - 1 (XTMP + 1) ** TUK
C
C where XTMP is the # of observations in Grp2 divided by the #
C of observations in Grpl. (NOTE: The higher "N" is always the
C numerator.) In the case of equal N's, XTMP - (N+1)/N.
C
C & TUK is the # of significant differences for a given meas.
C
C

"-. XTMP - X2 / Xl
IF (XTMP .LT. 1.0) XTMP - Xl / X2
IF (Xl .EQ. X2) XTMP = (Xl+1.0) / X2

.'a XMULT - (2.0 * XTMP) / (XTMP ** 2 - 1.)

CREWIND WORKC

READ (WORKC) NUMG
READ (WORKC) NMEAS
KKK - 1 z- iMKK - 1 -
WRITE (LPOUTC,1200)
1200 FORMAT('l',80('*)/O('*'),lOX,' TUKEY QUICK TEST OF LOCATION

1 SUMMARY ',1OX,10('*')/80('*'))
WRITE (LPOUTC,1300) C-36
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./ *%

1300 FORMAT('OMeasure *Pooled Minimum',5X,'Range',5X,'* TUKEY
1 Count * Level of Significance')

DO 200 I - 1,NMEAS
KK - KIK
READ (TEMPiC 'KK) XBAR1 ,SD,NMOBS1 ,PSUM,RANG,VAR1
READ(TEMP1C'KK) KNT1 ,MIN1 ,MAX1 ,MINP,MAXP

D WRITE(5,957) XBAR1,SD,NMOBS1,PSUH,RANG,VARl
* ~D WRITE(5, 937) KNT1 ,HIN1 ,MkX1 ,MINP ,MAXP

KK- JGRP2 + IKKK !Get to begining Grp2.
READ(TEMP1C'KK) XBAR2,SD,TUK,T,RANG,VAR2
READ(TEMP1C'KK) KNT2,MIN2,MAX2,MING,MAXG

* D WRITE(5,957) XBAR2,SD,TUK,T,RANG,VAR2
* ~D WRITE(5,917) KNT2,MIN2,MAX2,MING,MAXG -

IF (MING -EQ. MAXG) GO TO 190 ! TUKEY doesn't apply.
IF (MING -EQ. 1) GO TO 100 !Count #/ of meas.
GO TO 130 *

10 READ(WORKC) NUMOBS

TUK-O0
DO 110 K - 1,NUMOBS
READ(WORKC) (X(NN) , NN - 1,NMEAS)
IF (X(I) .LT. MIN2) TUK - TUK + 1

*110 CONTINUE

READ (WORKC) NUMOBS

DO 120 K - 1,NUMOBS
READ (WORKC) (X(NN), NN - 1,NMEAS)
IF (X(I) -GT. MAXl) TUK - TUK + I

120 CONTINUE
C

GO TO 160 .

130 READ(WORKC) NUMOBS
TUK-O0

C
DO 140 K - 1,NUMOBS .

READ(WORKC) (X(NN) ,NN - 1,NMEAS) *-

IF (X(I) .GT. MAX2) TUK - TUK + 1
140 CONTINUE
C

READ (WORKC) NUMOBS
DO 150 K - 1,NUMOBS
READ (WORKC) CX(NN),NN - 1,NMEAS)
IF (X(I) .LT. MINi) TUK - TUK + 1

150 CONTINUE
C
C Now calculate the Level of Significance value.
C
160 REWIND WORKC

*READ (WORKC) NUMG
READ (WORKC) NMEAS

SVAL - 1.0
IF (TUK .LT. 20) GO TO 170 IPrevents "Floating Overflow" error.
GO TO 180 1 .

170 IF (TUK .NE. 0) SVAL - XMULT *((XTMP**TUK-1)/

1 ((XTMP + 1.0) **TUK)) C3
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k 180 WRITE(LPOUTC,1400) I,MINP,RANG,TUK,SVAL
1400 FORMAT(1X,I7,2(2X,G13.6),6X,I6,4X,F8.4)

GO TO 195
190 SVAL - 1.0
195 KC - MIK

READ (TEMP1C'KC) XBAR1,SD1,NMOBS1,PSUM,SQDSM,VAR
*~K KI- M

WRITE (TEMP1C'KK) XBAR1 ,SD1,NMOBS1 ,PSUM,SVAL,VAR
KICK - 2*1 + 1
HICK - KIK.4200 CONTINUE

C a

WRITE (TTOUTC, 1500)
1500 FORMAT('Olndicate the level of significance desired to keep
lthose measures.')
READ (TTINC,1600) TTST
1600 FORMAT(F6.4)

READ2~ (TICI IBHAR1,SD1,NMOBS1,PSUMSVAL,VAR

READ (TEMP1C'KK)
IF SA GT TTGOT21 !Po.thih
MESUSD - MESUSD + 1

KK- JGRP2 + KKKI
READ (TEKP1C'KC) XBAR2,SD2,TUICT,RANG,VAR
KIC - JGRP2 + IKKK
TUIC - 1000
WRITE (TEMP1C'CI) XBAR2,SD2,TUIC,T,RANG,VAR

210 KKKI- 2*+ 1
220 CONTINUEL
C
D KIKul
D NEND - NMEAS
D WRITE(5,975)

-D975 FORMAT(' SSATUK -- ENTERING THE DO 979/9 77 BLOCK.')4
. -'D DO 979 L-1,NEND

D READ(TEHPIC'IUC)XBAR,SDEV,NMOBS,PSUM,SVAL,VAR
D READ(TEMPlI KI)KNT1 ,MIN1 ,MAX1,MINP,MAXP
D WRITE(5,957) XBAR,SDEV,NMOBS,PSUM,SVAL,VAR
D WRITE(5,937) KNT1,MIN1,MAX1,MINP,MAXP
D979 CONTINUE
C
D DO 977 L-1,NEND
D READ(TEMP1C'KC) XBAR2,SD2,TUK,T,RANG,VAR
D WRITE(5,957) XBAR2,SD2,TUIC,T,RANG,VAR
D READ(TEMP1C'KK) KNT2,MIN2,MAX2,MING,MAXG
D IRITE(5,917) KNT2,MIN2,MAX2,MING,MAXG
D977 CONTINUE
C
C Using the preceeding data we're now going to generate
C the new data point, Y.
C
230 IF (MESUSD .GT. 1) GO TO 240 c3
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WRITE(TTOUTC, 1700)
1700 FORMAT('OSSATUK No significant differences were found.')
RETURN

* C
240 IF (OPTN .GT. 4) GO TO 250 ! If "t-Test".
GO TO 260

. 250 WRITE(LPOUTC,1800)
WRITE(TTOUTC,1800) ' 4,.

1800 FORMAT('OThe new data point, Y, will be generated using'
1/' the results of the "t-Test" ')

* GO TO 270
260 WRITE(LPOUTC,1900)

" ~WRITE (TTOUTC, 1900 ) "-=

1900 FORMAT('OThe new data point, Y, will be generated using'
1/' the results of the TUKEY Quick Test of Location')

270 IF (MOD(OPTN,4) .EQ. 1) WRITE(LPOUTC,2000)
- - 2000 FORMAT(' and Univariate SCALING.')

IF (MOD(OPTN,4) .EQ. 2) WRITE(LPOUTC,2100)
2100 FORMAT(' and Univariate WEIGHTING.')
IF (MOD(OPTN,4) .EQ. 3) WRITE(LPOUTC,2200)
2200 FORMAT(' and Translated SCALING.')
IF (MOD(OPTN,4) .EQ. 0) WRITE(LPOUTC,2300)

2300 FORMAT(' and Translated WEIGHTING.')
WRITE (LPOUTC,2400) TTST -

.. 2400 FORMAT('O A significance level of ',F7.4,' was chosen.')
KKK -1
D WRITE(5,983)
983 FORMAT('O SSATUK -- Entering DO 280 ')
C

DO 280 I - 1,NMEAS
KK - KKK
READ (TEHPlC'KK)
READ (TEMPlC'KK) KNTI,MINl,MAX1,MINP,MAXP
IF ((OPTN.EQ.) .OR. (OPTN.EQ.2) .OR. (OPTN.EQ.5) .OR.

1 (OPTN.EQ.6)) MINP - 0.0

READ (TEMPC'KK)
WRITE (TEMPIC'KK) KNT1 ,MINl ,MAXl ,MINP,MAXP
KK - JGRP2 + KKK
READ(TEMPlC'KK) XBAR2,SD,TUK,T,RANG,VAR2
IF (MOD(OPTN,2) .EQ. 0) RANG - SD ! We're weighting.
KK - JGRP2 + KKK IGet odd #'ed Grp2.
WRITE (TEMPIC'KK) XBAR2,SD,TUK,T,RANG,VAR2
KKK - 2*1 + 1 1 Step thru Grp2 at odd #'s.

280 CONTINUE
C

REWIND WORKC .--

" READ (WORKC) NUMG
READ (WORKC) NMEAS
TOBS - 0.0

C
D WRITE(5,989)
989 FORMAT('O SSATUK -- Entering DO 320.')
C

..1 DO 320 I 1,2 C-39 I
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YSUM(I) -0.0

YSQSM(I) =0.0

READ (WORKC) NUMOBS

DWRITE(5,980)

- -980 FORMAT(' SSATUK -- Entering DO 310 '
KKK- 1

DO 310 J - 1,NUMOES '.-

KK - KKK
READ(WORKC) (X(NN),NN =1,NMEAS)

Y - 0.0
C%

DO 300 K - 1,NMEAS .

READ (TEMPlC'KK)
READ (TEMPIC'KK) KNT1,MIN1,MAX1,MINP,MAXPL-%.
KK - JGRP2 + KKK
READ(TEMPIC'KK) XBAR2,SD2,TUK,T,RANG,VAR2
READ(TEMP1C 'KK) KNT2 ,MIN2 ,MAX2 ,MING,MAXG
IF (TUK .LT. LVLS) GO TO 290
XX - X(K) kZ.

IF (KNT2 .LT. 0) SIGN - -1.0
IF (RANG .EQ. 0) GO TO 290
Y - Y + (SIGN*(XX-MINP) /RANG)

290 KKK -2*K+ 1
KK - KKK

300 CONTINUE
C

IF ((I.EQ.1) -AND. (J.EQ.1)) WRITE (LPOUTC,2500)
2500 FORMAT('1 Measures contributing to the
1 calculation of variable "Y"'/28X,' GROUP SUBJECT
2 I 8 1 1)
WRITE (LPOUTC,2700) I,J,Y

2700 FORMAT(30X,I4,4XI6,6X,Gl3.6)
YSUM(IM YSUM(I + y
YSQSM(I) -YSQSM(I) + Y*Y %.~ ~
KKK -1

C1 CONTINUE

XOBS - NUMOBS
TOES - TOBS + XOBS
YMEAN(I) - YSUM(I) IXOBS
YSD(I) - (YSQSM(I) -((YSUM(I)*YSUM(I)) /XOBS)) /(XOBS-1.)

320 CONTINUE
C
C Calculate the pooled Y statistics.
C
D WRITE(5,987)
987 FORMAT('O SSATUK - Calculating the Y statistics.')

YSUMP - YSEJM(l) +- YSUM(2)
YSQSMP - YSQSM(l) + YSQSM(2)
DF2 - TOES - DFI -

YMEANP - YSUMP /TOES
YSDP - (YSQSMP -((YSUMP*YSUMP) /TOES)) /(TOBS-1.O)
SST -YSQSMP -((YSUMP*YSUMP) /TOES) ~

C-40
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SSB - (Xl*(YMEAN(l) -YMEANP)**2 + (X2*(YMhEAN(2) -YMEANP)**2))
SSW - SST - SSB
Fl - (SSB/DFl) / (SSW/DF2)
F2 - ((X2*(YMEAN(l) -YMEAN(2)))**2) / (YSD(1) + YSD(2))
WILKS SSW / SST
SOKEGA -(SSB - ((DF1*SSW) /DF2)) /(SST + (SSW/DF2))
RSQ - 1.0 - WILKS -

YSD(l) - SQRT(YSD(l))
YSD(2) - SQRT(YSD(2))
YSDP - SQRT(YSDP)
MESUSD - MESUSD - I
WRITE(LPOUTC,2800) MESUSD

* 2800 FORHAT('l The following',I4,' measures were used to compute Y.1)
IKK - 1

DO 340 I - 1,NMEAS
KK - JGRP2 + IKK
READ (TEMPIC'KK) XBAR2,SD2,TUKT,RANG,VAR2
READ (TEMPlC'KK) KNT2,MIN2,MAX2,MING,MAXG
IF (TUK .LT. LVLS) GO TO 330
IPNT - DSL + MCL + PHAME(I) + 1

C--- READ(SSAC'IPNT,ERR - 350) STITLE
WRITE(LPOUTC,2900) KNT2,(STITLE(NN),NN - 1,STLNG)

* 2900 FORKAT(' Measure ',14,': '<STLI4G>A1)
*330 IKK -2*1I+1

340 CONTINUE
C
WRITE(LPOUTC ,3000)
3000 FORMAT('OStatistics on new variabl-et)
WRITE(LPOUTC,3100)
3100 FORMAT(10X,' MEAN ',20X,' STD.DEV. '
WRITE(LPOUTC,3200) YMEAN(1),YSD(1)
3200 FORMAT(' Grpl ',F1O.5,20X,F1O.5)
WRITE(LPOUTC,3300) YMEAN(2),YSD(2)
3300 FORMAT(' Grp2 ',FlO.5,20X,F1O.5)
WRITE(LPOUTC,3400) YMEANP,YSDP
3400 FORMAT(' Pooledt ,FIO.5,20X,F1O.5) .~ %

WRITE(LPOUTC,3500) Fl,F2
3500 FORMAT(/'0 Fl :',Gl3.6/' F2 :',Gl3.6)
WRITE(LPOUTC,3600) SSB,SSW,SST,WILKS,SOt4EGA,RSQ
3600 FORMAT(//'0 SSB :',G13.6/' SSW :',G13.6/1 SST
1 G13.6///'0 Wilkes-Lambda t',G13.6/' S-Omega
2 ,G13.6/1 R-Squared ',Gl3.6)
GO To 360

*350 WRITE (TTOUTC, 3700) STITLE
3700 FORMAT(' SSATUK - Error while attempting to read measure
1 name ',<STLNG>A1)

360 RETURN
END

C-4 1
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PROGRAM C-2. MANOVA.

C MULTIVARIATE ANALYSIS OF VARIANCE
C SEE PAGE 238, COOLEY AND LOHNES
C
C THIS PROGRAM COMPUTES MANOVA TESTS OF HI (EQUALITY OF DISPERSION
C AND H2 (EQUALITY OF CENTROIDS), UNIVARIATE F-RATIOS FOR MEANS,
C SELECTED SAMPLE STATISTICS, AND THE W(POOLED WITHIN-GROUP SSCP.
C AND T(TOTAL SAMPLE SSCP) MATRICES REQUIRED FOR THE DISCRIMIANT
C ANALYSIS PROGRAM. THESE MATRICES ARE PUNCHED IN UPPER-TRIANGULAR
C FORM. THE PROGRAM WILL PROCESS UP TO 20 VARIABLES AND ANY NUMBER
C OF GROUPS.
C
C M - NO OF VARIABLES
C KG = NO OF GROUPS
C NG = NO OF SUBJECTS , PRECEDING EACH GROUP DATA

C
C RR - T MATRIX
C A - A MATRIX
C B - W MATRIX
C C - D INVERSE
C G - GROUP MEANS, LAST ROW IS THE GRAND MEAN
C
C SUBROUTINE MATINV IS REQUIRED.
C
SUBROUTINE MANOVA (M,KG,IO)

C
INCLUDE 'SALMAI.DEF'
REAL T(25), AA(25,25), BB(25,25)

C
WRITE (6,2)
C 4
2 FORMAT ('IMANOVA.')
EM-M ",-.'
EKG-KG
EK-KG

"e-7 WRITE (6,6) M,KG
6 FORMAT ('OANALYSIS FOR ',13,' VARIABLES AND ',14,' GROUPS')
WRITE (6,9)
9 FORMAT (iX, 25('-'))
C
C INITIALIZE VARIABLES
C
DO 7 J-I,M
T(J)-O.O
DO 7 K-i,M
B(J,K)-O.O
7 C(J,K)=O.O
HiLOGS-0.0
C
GAlS-O.0
FAiS-o.o
N-0 C-42
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* DO 19 IG-1,KG
READ (4) NG

- - ENG-NG
N-N+NG
WRITE (6,9)
WRITE(6,1O) IG,NG
10 FORMAT (' GROUP 1,13,1 NG - ,16)

DO 11 J-1,M
U (J)=O. 0

* DO 11 K-1,M
11 A(J,K)=O.O
C

-. C CALCULATE MEAN AND S.D.

CDO 12 NS-1,NG

READ(4) (V(J),J=1,M)
DO 12 J-1,M
U(J)-U(J)+V(J)
T(J)-T(J)+V(J)
DO 12 K-1,M
A(J,K)=A(J,K)+V(J)*V(K)

12 C(JK)-C(J,K)+V(J)*V(K)
CDO1 =,

DO 13 K-1,M

A(JK)-A(J,K)-U(J)*U(K)/ENG
B(J ,K)-B(J ,K)+A(J ,K)

13 A(JK)=A(J,K)/(ENG-1.)
C -

DO 14 J-1,M
U(J)-U(J)/ENG
GM(IGJ) - U(J)

14 W(J)-SQRT (A(J,J))
C ...

WRITE(6,15)IG
15 FORMAT (' MEANS FOR GROUP ',14)
WRITE (6,16) (U(J),J-1,M)
16 FORMAT (IHO, 10(3X, F7.2))
WRITE (6,17)4

* 17 FORMAT (21HOSTANDARD DEVIATIONS)
WRITE (6,16) (W(J),J-1,M)

C
C CALCULATE DISPERSION DETERMINANT

-. C

* CALL MATINV (A,M,DET)
WRITE (6,18) DET

18 FORMAT ('ODISPERSION DETERMINANT -',F8.3)

ELLOGS - H1LOGS+((ENG-1.O)*ALOG (DET))
FA1S-FA1S+(1.0/(ENG-1.0))

* . GAlS-GAS+(1.0/((ENG1.0)**2))

9 19 WRITE(6,9)PIK_ C
C CALCULATE MEANS FOR TOTAL SAMPLE AND S.D.
C FOR POOLED-SAMPLES C4

C-4



'- ' -- - -- r l - r r r

EN-N-

C

DO 20 J-1,M

A(J)(J) TJ)TK)E

20 C(J,)-BQT((J,)EE)
C
DO 21 J-,M2

WRI)T(,( (J)/ENM
G(KG+l,)-TJ

WRITE(6,22)
22 FORMAT ('OMOESAR OL SAMPLE') IAIOS'
WRITE (6,16) ( (J),J1,M)

CWSVT MATRIX

C

DO 35 J-1,M
DO 35 K-1,M

AA(J,K)-A(J,K)
BB(J ,K)-B(J,K)

C
C A IS NOW THE A(AMONG-GROUPS SSCP) MATRIX. B IS NOW THE W(WITHIN
C GROUPS SSCP) MATRIX. C IS NOW THE POOLED-GROUPS DISPERSION EST.
C
C CALCULATE EQUALITY OF DISPERSION
C
CALL MATINV(C,M,DET)
WRITE(6,9)
H1LOG-(EN-EK)*ALOG (DET) .'

Al AlA(.*EK1.( O))

A2-(GA1S-(l./(EN-EK)**2))*((EM-1.0)*(EM+2.0))
2 /(6.O*(EK-1.0))
DIF-A2-Al*Al

* IF(DIF) 24,24,25
24 F2in(F1+2.O)/(Al*Al-A2)

F-(F2*XMM)/(F1*(BlXMM))
GO To 45
25 F2-(F1+2.0)/DIF
B1-F1/(1 .O-A1-(Fl/F2))
Fu'XMM/Bl

45 NDF1 - 9999
IF (Fl .LE. 9999.) NDF1 -Fl

NDF2 -9999 C4
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IF (F2 .LE. 9999.) NDF2 - F2
WRITE(6,26) XMM,F
26 FORMAT('OFOR TEST OF Hi (EQUALITY OF DISPERSIONS), M ',FiO.3,
2 ' AND F - ', F10.3)
WRITE (6,27) NDFi, NDF2

27 FORMAT ('OFOR F, NDF1 - ',13,' AND NDF2 - ',16)
PROBF-PRBF(Fl,F2,F)
WRITE (6,900) PROBF
900 FORMAT (' DISPERSION PROB. - ', F8.3)

WRITE(6,9)

C CALCULATE UNIVARIATE F-RATIOS
C
N1-EKG-1.0
N2 -E N-EKG
AN1-NI
AN2-N2
WRITE(6,9)
WRITE(6,40) Ni, N2
40 FORMAT('OUNIVARIATE F-RATIOS, WITH NDFI - ',13,' AND NDF2 - ',16)
WRITE (6,9)
WRITE (6,4i)

41 FORMAT ( 'OVARIABLE AMONG MEAN SQ WITHIN MEAN SQ F
i-RATIO ETA SQ PROB'/)
DO 42 J-i,M
ETASQ-A(J,J)/(A(J,J)+B(J,J))
AMS-A(J,J)/(EKG-1.0)
WMS-B(J,J)/(EN-EKG)
F-AMS /WMS
PROBF-PRBF(AN1 ,AN2, F)

42 WRITE(6,43)J,AMS,WMS,F,ETASQ,PROBF
43 FORMAT(3X,I3,5XF11.2,11XF11.2,10X,F7.2,8X,F5.4,F8.3) '..

WRITE (6,9)
C

CALL MATINV(BB ,M,DETW)
CALL MATINV (AA,M,DETT)
C :
C DETW IS DETERMINANT OF POOLED-SAMPLES DEVIATION SSCP MATRIX,W.
C DETT IS DETERMINANT OF TOTAL SAMPLE DEVIATION SSCP MATRIX,T.
C
C CALCULATE WILKS LAMBDA AND GENERALIZED CORRELATION RATIO

-~ C

XL-DETW/DETT
YL-i.O-XL .!
WRITE(6,46)XL,YL
46 FORMAT (16HOWILKS LAMBDA - F7.4,47H GENERALIZED CORRELATION RAT

210, ETA SQUARE - ,F5.4)

C CALCULATE OVERALL DISCRIMINATION ..

C
IF(M-2) 47,47,49
47 IF(KG-3) 48,48,49
C
C FOR SPECIAL CASES SEE C AND L PAGE 228
C FOR SMALL NUMBERS OF GROUPS (LT 3), MORE THAN 2 MEASURES

C-45
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C
48 KQ1 -KG-I : I
EKGMi KQGi
YL - XL **(l./EKQ41)
Fl - KQ41*M
F2 - Kc241*(N-M-KGM1) -h

GO TO 50

49 SL - SQRT (((EM * EM) *((EKG 1.O)**2) -4.O)/((EM*EM)+

2 ((EKG-1.0)**2)-5.O))
YL-XL**(1 .O/SL)
PL-(EN-1 .O)-( (EM+EKG)/2 .0)
QL--((EM*(EKG-1.0))-2.0)/4.O
RL-(EM*(EKG-1 .0) )/2.0
F1=2. O*RL
F2 - (PL*SL) + C2.O*QL)
50 Ni - 9999
IF (Fl .LE. 9999.) Ni Fl 4
N2 - 9999

* .IF (F2 .LE. 9999.) N2 -F2

2 F-((1.0-YL)/YL)*(F2/F1)
WRITE(6,51) F
51 FORMAT('OF-RATIO FOR H2, OVERALL DISCRIMINATION, -',F9.2)
WRITE(6,52) Ni, N2
52 FORMAT ('ONDFi - ',13,' AND NDF2 - ',16)
PROBF-PRBF(Fi ,F2 ,F)
WRITE (6,100) PROBF
100 FORMAT (' OVERALL DISCRIMINATION PROB. -',F8.5)
WRITE (6,9)
C
RETURN
END

C-46
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PROGRAM C-3. MATRIX INVERSION.

SUBROUTINE MATINV(A,M,DET)
C
C GAUSS REDUCTION INVERSION WITHOUT ROW AND COLUMN INTERCHANGES
C
C M IS THE ORDER OF THE SQUARE MATRIX,A
C A-INVERSE IS RETURNED IN A
C DETERMINANT IS RETURNED IN DET
C

DIMENSION IPIVOT(25),A(25,25),B(25),INDEX(25,2),PIVOT(25)

C
DET-1.O
DO 1 J-1,M-%
PVT-A(J,J)
DET-DET*PVT
A (J, J ) - . 0 ,;,,

DO 2 K-1,M .

C DIVIDE THE PIVOT ROW BY THE PIVOT ELEMENT
2 A(J,K)-A(J,K)/PVT

DO I K=1,M
C REDUCE THE NON-PIVOT ROWS

IF(K-J) 3,1,3
3 T-A(K,J)

J A(K,J)-O.O
DO 4 L-1,M

4 A(K,L)-A(K,L)-A(JL)*T
1 CONTINUE .

IF(DET.LT.O.) DET-ABS(DET)
RETURN
END
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PROGRAM C-4. "RIDGE" ADJUSTED MULTIVARIATE DISCRIMINANT ANALYSIS.

C MULTIPLE GROUP DISCRIMINANT ANALYSIS
C
C THIS PROGRAM COMPUTES DISCRIMINANT FUNCTIONS, THEIR CANONICAL
C CORRELATIONS WITH GROUP MEMBERSHIP DUMMY VARIATES, F-RATIOS FOR-.
C THESE, AND CENTROIDS OF GROUPS IN THE STANDARDIZED DISCRIMINANT
C FUNCTIONS SPACE. COEFFICIENTS FOR COMPUTING STANDARDIZED
C DISCRIMINANT FUNCTIONS SCORES FROM DEVIATION TEST SCORES ARE
C SEE PAGE 258, COOLEY AND LOHNES 1971
C
C REQUIRED SUBROUTINES ARE DIRMI AND HOW.
C
C INPUT
C
C M - NO. OF VARIABLES
C KG = NO. OF GROUPS
C N - NO. OF SUBJECTS .-
C RR - T-MATRIX, TOTAL SAMPLE DEV. AS OUPUT BY MANOVA
C B m W-MATRIX, POOLED WITHIN-GROUPS DEV.,FROM MANOVA
C GM-MATRIX, GROUP MEANS AND GRAND MEANS, FROM MANOVA
C S - "RIDGE" ADJUSTMENT
C
C OUTPUT
C
C XL WILKS LAMBDA
C V - CANONICAL R
C Y CHI-SQUARE
C A FACTOR PATTERN FOR DISCRIMINANT FUNCTIONS .

C
C

SUBROUTINE DISCM (M,KGN,IO) ,
C

DIMENSION A(25,25), B(25,25), C(25,25), T(25), U(25), V(25),
2 W(25), X(25), Y(25), Z(25), D(25,25), QM(25,25)

C
COMMON /MAT/C,AB,D,GM,V,Y,XL
COMMON /SCR/ U,W,X,Z
COMMON /s/S

C

REAL T(25) '
C
KC - 0,.-4.
1 WRITE (6,2)
2 FORMAT('lMULTIPLE GROUP DISCRIMINANT ANALYSIS')
DO 8 J-1,M
DO 8 K-J,M
RR(K,J)-RR(J K)
8 B(K,J)-B(J,X)
C
DO 15 J-1,M
DO 15 K-1,M . .

15 A(J,K)-RR(J,K)-B(J,K) --4-: ~~~C-48 -.,--
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DO 500 I-1,M
500 B(I,I)-B(II)+S
C
C A NOW CONTAINS THE A MATRIX (AMONG-GROUPS DEVIATION SSCP MATRIX).
C B CONTAINS THE W MATRIX (WITHIN-GROUPS DEVIATION SSCP MATRIX)
C (INCLUDING "RIDGE" ADJUSTMENT).
CIF (M-KG) 10,11,11

10 MD-M
GO TO 12

11 MD-KG-I
*8 C

12 CALL DIRN4 (A,M,B,D,TMD)

C ROOTS OF W INVERSE*A ARE IN T AND COLUMN EIGENVECTORS ARE IN D.
C

EM=M
EKG-KG
EN-N
EKC-KC
XL=1. 0
TRACE -0.0

DO 13 J=1,MD
U(J)-T(J)/(l.O+T(J))
V(J)-SQRT (U(J))
W(J)-1.0/(1.O+T(J))
XL=XL*W(J)

D WRITE (5,9100) T(J),U(J),V(J),W(J),XL,TRACE

D9100 FORMAT (' T - ',E16.7,' U - ',E16.7,' V ',E16.7/
D 1 ' W - ',E16.7,' XL- ',E16.7,' TR- ',E16.7)
13 TRACE-TRACE+T(J)

CR-TRACE/(MD+TRACE)
ES-SQRT((CR*CR)/(I-CR*CR))
OUTPUT ES,CR
D WRITE (5,9000) ES,CR
D9000 FORMAT (' ES - ',El6.7,' CR = ',E16.7)
C
DO 14 J=1,MD ..

14 Z(J)=100.0*(T(J)/TRACE)

C
IF (M-2) 16,16,17
16 IF (KG-3) 18,18,17
C
C FOR SPECIAL CAFES SEE C AND L PAGE 228
C FOR SMALL NUMBERS OF GROUPS (LT 3), MORE THAN 2 MEASURES

18 KGM1 KG - 1

EKGQ1 = KGK1
YL - XL **(./EKG1)
Fl - KGMI*M
F2 - KG(1*(N-M-KG(1)
GO TO 19
17 SL=SQRT(((EM*EM)*((EKG-1.0)**2)-4.0)/((EM*EM)+
2 ((EKG-1.0)**2)-5.O))
YL-XL**(I.O/SL) 7 ]

.......................



PL'm(EN- . O-EKC )- ((EM+EKG) /2.0)
QL--((EM*(EKG-1.0))-2.O)/4.O
RL-(EM*(EKG-1 .O))/2.O
Fl-2.0*RL
F2in(PL*SL)+(2 .0*QL) ,

19 Ni - 9999
IF (Fl .LE. 9999.) Ni - Fl
N2 - 9999
IF (F2 .LE. 9999.) N2 - F2
F-( (1 .0-YL)/YL)*(F2/Fi)
YL-1.O-XL
WRITE (6,201)XL,YL
201 FORMAT('OWILKS LAMBDA -',F7.4,' GENERALIZED CORRELATION RATIO,',
2 ' ETA SQUARED - ',F7.4)
WRITE(6,20)F
20 FORHAT('OF-RATIO FOR H2,OVERALL DISCRIMINATION -',E16.7)

WRITE (6,21) Ni, N2.
21 FORMAT('ONDF1 - ',13, ' AND NDF2 -',16)
PROBF-PRBF(F1 ,F2 ,F)

N WRITE (6,211) PROBF
211 FORMAT (' OVERALL DISCRIM. PROB. -',F8.3)

J-MD
X(J+1)-1.O

22 X(J)-X(J+1)*W(J)

IF(J 23,23, 22
23 DO 24 J-1,MD
24 Y(J)--PL*ALOG(X(J))
C
WRITE(6,25)

25 FORMAT('OCHI-SQUARE TESTS WITH SUCCESSIVE ROOTS REMOVED')

261 FORHAT('O',19X,'(ETA) (ETA SQUARE))

26 FORMAT (' ROOTS REMOVED CANONICAL R R SQUARED EIGEN',
1 'VALUE CHI-SQUARE N D F LAMBDA PERCENT TRACE'/) .

DO 27 J-1,MD :?
JT-J-1.0

27 WRITE(6,28) JT,V(J),U(J) ,T(J) ,Y(J) ,NDF, X(J) ,Z(J)
C
28 FORMAT(6X,I4,9X,2(F6.3,8X),El6.7,5X,F1O.2,4X,15,2X,F9.2,F8.2)

C D - COEFFICIENTS VECTORS

DO 29 Jinl,MD
DO 29 K-1,M

DO 29 L-1,M
29 A(J,K)-A(J,K)+D(L,J)*(RR(L,K)/(EN-1.O))N

C
DO 30 J-1,MD
DO 30 K-1,MD
B(J,K)-O.O
DO 30 Linl,M cs

C-50



30 B(J,K)-B(J,K)+A(J,L)*D(L,K) . .

DO 31 J-1,M
DO 31 K-1,MD
31 D(J,K)-D(J,K)*(1.O/SQRT(B(K,K))) ,.C :.. ..-

WRITE (6,32)
32 FORMAT('OROW COEFFICIENTS VECTORS')
DO 33 J-1,MD

33 WRITE(6,49) J, (D(K,J),K-1,M)
* 49 FORMAT(' D F ',13,2X,5F8.3/(1OX,5F8.3)) .-
*. DO 34 J-I,M

34 Z(J)-SQRT(RR(J,J)/(EN-1.0))
C
C TOTAL SAMPLE STANDARD DEVIATIONS ARE NOW IN Z.
C
DO 35 J-1,M
DO 35 K-1,M
35 RR(J,K)-RR(J,K)/(EN*Z(J)*Z(K))
C
C TOTAL SAMPLE CORRELATION MATRIX IS NOW IN C.
C
DO 36 J-l,M
DO 36 K-1,MD
36 B(J,K)-D(J,K)*Z(J)

DO 37 J-1,M
DO 37 K-1,MD >

"" A(J,K)-O.O
"" DO 37 L-1,M

37 A(J,K)=A(J,K)+RR(J,L)*B(L,K)
* C

WRITE(6,38)
", 38 FORMAT('OFACTOR PATTERN FOR DISCIMINANT FUNCTIONS')

DO 39 J-1,M
39 WRITE (6,40) J, (A(J,K),K-1,MD)
C
40 FORMAT (' TEST ',14, 10(3X,F7.3) / (9X, 1O(3X,F7.3)))
DO 41 J-1,M
T(J)-O.O
DO 41 K-1,MD
41 T(J)-T(J)+A(J,K)*A(J,K) ,

C
WRITE (6,42) MD
42 FORMAT('OCOMMUNALITIES FOR ',15,' DISCRIMINANT FACTORS')
WRITE (6,43) (J,T(J), J-1,M)

"4 43 FORMAT ('0', 1O(2X, 13, F7.3))

c SAVE COMMUNALITIES IN THE V A RA

DO 231 Jm1,M
231 V(J)-T(J)

C

DO 44 J-1,MD C-51
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T(J)-O.O
DO 44 K-1,M

44 T(J)-T(J)+A(K,J)*A(K,J)
C
WRITE (6,45)
45 FORMAT ('OPERCENTAGE OF TRACE OF R ACCOUNTED FOR BY EACH ROOT')

DO 46 J-1,MD
46 T(J)=100.0*(T(J)/EM)
WRITE (6,43) (J,T(J),J-1,MD)

KGT-KG+l
C 4
C READS GROUP MEAN VECTORS AND GRAND MEAN VECTOR INTO COLUMNS OF A.
C COLUMN KGT CONTAINS THE GRAND MEANS.
C

DO 47 J-1,KGT
DO 47 K-1,M .

47 A(J,K) - GM(J,K)

C
DO 48 J-1,KG
DO 51 K-1,MD
T(K)-O.O
DO 51 L-1,M
51 T(K)=T(K)+(A(J,L)-A(KGT,L))*D(L,K)
WRITE (6,50) J,MD
50 FORMAT ('OCENTROID FOR GROUP ',14,' IN ',14,' DIMENSIONAL DISCRIM', -"

2 'INANT SPACE')
48 WRITE(6,43) (K,T(K),K-1,MD)

RETURN
END

• . ' V.
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PROGRAM C-5. DIAGONALIZATION OF A REAL NON-SYMMETRIC MATRIX.

(OF THE FORM B-INVERSE*A. CODED BY P.R. LOHNES,U.N.H.)

C
C A,M,B,X,AND XL ARE DUMMY NAMES AND MAY BE CHANGED IN THE

*C CALLING STATEMENT.
C
C THE EIGENVALUES OF B-1*A,AND MATRIX X CONTAINS THE EIGENVECTORS
C IN ITS COLUMNS. SUBROUTINE HOW PACKAGE IS REQUIRED.
c
C LVECT SPECIFIES THE NUMBER OF EIGENVECTORS TO BE RETURNED.
C ,*..

C SUBROUTINE DIRNM CA,M,B,X,XL,LVECT)

REAL A(25,25),B(25,25),X(25,25),XL(25),U(25),V(25),W(25),Y(25)
C

CALL HOW(M,25,M,B,XL,X,U,V,W,Y)
C

DO 1 I-1,M
I XL(I)-1.0/SQRT(ABS(XL(I)))

DO 2 I-1,M
DO 2 J-1,M

2 B(IJ)-X(I,J)*XL(J)
DO 3 I-1,M
DO 3 J-1,M
X (I, J)-O. 0
DO 3 K-1,M

3 X(I,J)-XCI,J)+B(K,I)*A(K,J)
DO 4 I-1,M :
DO 4 J-1,M
A(IJ)-O.O

DO 4 K-1,M

C A(I,J)-A(I,J)+X(I,K)* B(K,J)
* ~~C AN OTISBRM** FTENTS

C ANOCOTISBRM**OFTENTS
CALH (,5LET,,LXUVWY

C ALHWM2,VC,,LXUVWY
DO6I-,
DO 6 J-1,M -

DO(6,J-O.
DO 6 K-1,M

6 O A(IJ)A(,J)BIK)XK
DO6 A IJ-A(, )BIK)XK
DUO.1-,
DO 7 -1,M

7 O SUMVS M+AJI*
DENUM-SRT ((SUMV)*2
DONSR 8 J-1 MV

8 O X JI-A(I)D
9 CONTINUEJI)DE

9 COLTUE #?~

C CLMSOF AXLI.J) ARE NOW NORMALIZED.
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RETURN
END
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PROGRAM C-6. EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX.

C BY HOUSEHOLDER,ORTEGA, AND WILKINSON. ORIGINAL PROGRAM BY " .
C DAVID W. MATULA UNDER THE DIRECTION OF WILLIAM MEREDITH,
C UNIVERSITY OF CALIFORNIA, BERKELEY, 1962
C (SEE RALSTON AND WILF,VOLUME 11(1967))
C MODIFIED BY P.R. LOHNES, PROJECT TALENTs1966.
C
C M IS THE ORDER OF THE INPUT MATRIX,R.
C MD IS THE DIMENSIONED SIZE OF R IN THE MAIN PROGRAM.
C NV IS THE NUMBER OF EIGENVECTORS TO BE COMPUTED.
C E IS THE VECTOR IN WHICH THE EIGENVALUES ARE RETURNED.
C V IS THE MATRIX IN WHICH THE EIGENVECTORS ARE RETURNED. " N

C THE EIGENVECTORS ATE STORED AS COLUMNS IN V.
C A,B,C, AND D ARE WORKSPACE VECTORS.
C

SUBROUTINE HOW (MVAR,MDIM, NVECT,R,EV,ABC,D)
C -

DIMENSION R(625),E(25),V(625),A(25),B(25),C(25),D(25) *-.*-.

C
M-MVAR

MD-MDIM
NV- NVECT

C
IF (M-1) 100,97,96

C
96 MI=M-1

C
C TRI-DIAGONALIZE THE MATRIX. (HOUSEHOLDER'S SIMILARITY ORTHOGONAL
C TRANSFORMATION)
C

M2-M1 *MD+M
M3-M2-MD
M4-MD+I

L-0
DO 1 I-, M2,M4
L=L+1

1 A(L)-R(I)
* B(1)-O.O

C
IF(M-2) 13,2,3

C
-3 KK--

D015 K-2,M1
KL-KK+K
KU-KK+M
KJ-K+1 .. .-... ,
SUM-O.o
DO 4 J-KL,KU

4 SUM-SUM+R(J) **2
S-SQRT(SUM)
Z -R (KL)

.'I B(K)-SIGN(S,-Z) C-55-,: ~C-55 .%

_ '
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S-1.0/s
C(K)-SQRT (ABS (Z)*S+1.0)
X-SIGN (S/C(K),Z)
R(KL)-C(K)
DO 5 I=KJ,M
JJ-I+KK
C(I )-X*R(JJ)

5 R(JJ)=C(I)
DO 8 J-K,M
JJ=J+1
D(J) -0.0
L-KK+J
DO 6 I=K,J
L-L+MD

6 D(J)=D(J) +R(L) *C(I)

IF (JJ-M) 7,7,9
C

7 D08 I=JJ,M
L -L+1

8 D(J)-D(J) +R(L)*C(I) ~
9 X=0.0

DO 10 J=K,M
10 X=X+C(J) *D(J)

X-.50*X
DOll I-K,M

LL-KK
KK-KK+(D
DO 15 I-K,M
LL-LL+MD
D015 J=I,M
L=LL+J

15 R(L)-R(L)+D(I)*C(J)+D(J)*C(I)
C
C

DO 12 1-1,M
X-A(I)
A(I )-R(L)
R(L)-X

12 L-L4+M4
2 B(M)-R(M3)

C
C COMPUTE EIGENVALUES. (ORTEGA 'S, METHOD OF STURM SEQUENCES)

U 13  BD-ABS (A(l))

D014 I-2,M
14 ED- AMAX1(BD,ABS (A(I))+B(I)**2)

BD-BD+1.O
DO 16 I-1,M
A(I)u"A(I)/BD -

B(I)-B(I)/BD
D(I)-l.O

16 E(I)--1.O C-56



DO 37 K-1,M
C
17 IF( (D(K)-E(K))/AMAXi(ABS (D(K)) ,ABS (E(K)), 1.OE-9)-i .OE-6)

2 37,37,18
C
18 X-(D(K)+E(K))*.50

521
S2 I 1.

Ccl )-A(i )-X
C

IF(C(i)) 19,20,20
C
19 ISi--1

N-0
GO TO 21

C
20 IS1=i

N-1
21 DO 3i 1 2,M
C

IF(B(I)) 22,26,22
22 IF(B(I-1)) 23,27,23
23 IF(ABS(C(I-1))-iABS(C(I-2))-1.OE-15) 24,25,25
C

24 C(I-i)-C(I-i)*i.0E15

*25 C(I)=(A(I)-X)*C(I-i)-B(I)**2*C(I-2)
GO TO 28

C
26 C(I)-(ACI)-X)*SIGN (1.,Si)

GO TO 28
C
27 C(I)=(A(I)-X)*C(I-1)-SIGN (B(I)**2,S2)
28 S2-Si
C

IF(C(I)) 29,30,29
C
29 Si-SIGN (S1,C(I)) -

C
IF(S2+Sl) 30,31,30

C
30 N-NI-
31 CONTINUE

-* N-K-N
C -

IF (N-K) 34,32,32
C
32 DO 33 J-K,N

*33 D(J)-X
34 N-N+i
C

IF(M-N) 17,35,35

--

5
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35 DO 36 J-N,H

C IF(X-E(J)) 17,17,36

C
36 E(J-X

GO TO 17

37 CONTINUE !CSB 01/29/79
C
C

DO 38 I-1,M
A(I)umA(I)*BD

38 B(I)-B(I)*BD
38 C(I)-(D(I)+E(I))*BD*.50

Ki-

39 I=1
40 DO 43 J-1,M1
C

IF (I-J) 41,43,41
41 IF(C(I)-C(J)) 43,43,42
C
42 I-J

Go To 40

43 CONTINUE
E (K )-C (I)
K-K+l
Hi-Hi-I

44 DO 45 142-1,141
45 C(H2)-C(H2+1)

46 IF(H1-1) 47,47,39

47 E(K) - C(1)
C

IF (ISIGN (1,NV)) 79,76,76
C
76 DO 77 I-1,M
77 C(I)-E(I)

J-M
DO 78 1-1,M4
E(I-C(J

78 J-J-1
79 CONTINUE
C
C DECIDE WHETHER TO COMPUTE EIGENVECTORS ,AND IF SO, H(O MANY
C (WILKINSON'S PROCEDURE)
C

IF(NV) 48,99,48
C

48 KX- IABS(NV)
J-1 C-58

I A-



DO 98 INV-1 ,KX
X-A(1)-E(INV)
Y-B(2)
m141-1
DO 54 I1iMl

'4 IF(ABS(X)-ABS(ii(I+Ij,, 49,51,53
4 C

D(I)-A(I+l) -E(INV)
V(IJ)-B(I+2)
z--x/C(I)
X-Z*D(I )+Y

C
IF (Mi-I) 50,54,50

C
50 Y-Z* V(IJ)

GO TO 54 .N*

51 IF (X) 53,52,53
C
52 X-1.OE-10
53 C(I-X

D(I)-Y
V(IJ)-O.0

Y-B(I+2)
54 CONTINUE

MJHM+J-1
C

IF(X 56,60,56

56 V(MJ)-1.0/X
57 14t1

VIJ+-(1.D()VM)j-I

X-V(MJ )**2+V( IJ )**2
4'58 1-1-1

iJ i +-
C

IF(I) 59,61,59
C

X-X+V(IJ)**2
GO TO 58

C
60 V(HJ)-1.0E1o

GO TO 57
C

61 X-SQRT(X)
DO 62 1-n1,M

62 V(lI)-V(IJ)/X
Jl4fl*MD-MD C5

C-5
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K-N .'

GO TO 66
C

63 K-K-i
JIJlMD
Y-O. 0
DO 64 1-K,M&j ja
L-31+I

64 Y-Y+V(IJ)*R(L)
DO 65 I-K,M
IJ-J+I-1
L-Jl+I

65 V(IJ)-V(IJ)-Y*R(L)
C
66 IF (Jl) 63,67,63

C
67 NPLUS -0

NKIN -0
DO 70 I-1,M
IJ-J+I-1

C
IF (V(IJ)) 68,69,69

C
68 NIMINIIN+1

GO TO 70
c
69 NPLUS-NPLUS+1
70 CONTINUE

IF (NPLUS-NKIN) 71,73,73

C
71 DO 72 1-1,M

IJ-J+I-1
72 V(IJ)--v(IJ)
73 CONTINUE
98 J-J*MD

C
C
C RESTORE TRE INPUT MATRIX.
C

99 MD1-MD+1

MI-M*D

DO 75 1-2,Ml,MDI
K-I
DO 74 J-JJ,M1,MD
R(K)-R(J)

74 K-K+l
75 JJ-JJ4t4Dl

GO TO 100
C
97 E(l)-R(1)

V(1)-1.0
C C- 60



100 RETURN
END

C96
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PROGRAM C-7. LOWER TRIANGULAR SQUARE ROOT OF A MATRIX.

SUBROUTINE MXSQRT(M)

C M - DIMENSION OF THE REAL, SYMMETRIC, VARIANCE-COVARIANCE MATRIX, D
C

INCLUDE ' SALMAI .DEF'

C ZERO ALL ENTRIES IN DUMMY MATRIX C
C
DO 100 1-1,25
DO 50 J-1,25
C(IJ)-O.O

50 CONTINUE
100 CONTINUE
C
C COMPUTE FIRST COLUMN

C
ASQRT-SQRT(D(i, 1))
DO 101 I-1,M
C(I,1)-D(I,1)/ASQRT
101 CONTINUE
C
C COMPUTE SECOND THRU MTH ROWS STARTING WITH SECOND COLUMN OF EACH ROW
C
C COMPUTE SECOND MAIN DIAGONAL ENTRY, C(2,2), ALL OTHER MAIN DIAGONAL
C BE COMPUTED LATER
C
C (2,2)-SQRT(D(2,2)-C(2,1)*C(2,1))

C
C NOW, COMPUTE REMAINDER OF ENTRIES
C
DO 102 I-3,M
DO 103 J-2,I-1
SUM-o. o

C
DO 104 K-1,J-1

SUM-C(I,K)*C(J,K) + SUM
104 CONTINUE
C
C(I,J)-(D(I,J)-SUM)/C(J,J)
103 CONTINUE
C!X

SUM,<).0
DO 105 K-1,I-1
SUM-C(I,K)*C(I,K) + SUM
105 CONTINUE
C
C(II) - SQRT(D(I,I)-SUM)
102 CONTINUE
C
DO 200 I-1,M
DO 200 J-1,M C-62

C-62
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200 D(IJ)-C(I,J)
C
C RECONSTRUCT VARIANCE-COVARIANCE MATRIX
C FORM TRANSPOSE OF SQUARE ROOT MATRIX
C
250 DO 300 I-1,M
DO 300 J-1,M
300 RR(I,J)-C(JI)
C
C FORM THE PRODUCT(SQUARE)
C
DO 400 J-1,M
DO 400 I-1,M
SUM-0.0

DO 500 K4,M
500 SUM-SUM+D(I,K)*RR(K,J)
C(IJ)-SUM
400 CONTINUE
RETURN
END

C-63
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PROGRAM C-8. CREATE SIMULATION DATA.

SUBROUTINE SDATA(MNG,NS, IUNIT)
C
C THIS ROUTINE CREATES SIM. DATA FROM REAL x

Cc .

DIMENSION X(25),SX(25),SS(25,25),SSD(25,25),D(25,25)
DIMENSION R(25,25),XM(25),SD(25),VAR(200),IVAR(25),Y(25)
COMMON /SCR/ X,SX,SS,SSDD,XM,SD

REAL VAR(200), XM(25)
REWIND(IUNIT)
REWIND(2)
DO 1000 ISUP-1,2
DO 12 I-1,M
12 XM(I)-O.O
C
C READ ACTUAL DATA,
C
C READ NUMBER OF OBSERVATIONS
C
READ (IUNIT) NG
REWIND 3 y.
WRITE (3) NG
DO 10 I-1,NG
READ(IUNIT) (X(L),L-,M)
DO 11 L-1,M
11 XM(L)-XM(L)+X(L)
10 WRITE (3) (X(L),L-1,M) ,.*.

-; DO 13 1-1,M
13 XM(L)-XM(L)/NG
REWIND (3)
C
C FIND CORREL. MAT. AND VAR. COV. MAT.

* C
CALL CORREL(M,R,1,0)

C
C DETERMINE SQUARE ROOT MAT.

Cc
C PRODUCE RANDOM NORMAL DIST.
C
IF(NS.EQ.O) NS-NG
IP-12345
IPOINT-1
REWIND (3) ~
WRITE (3) NS
DO 60 K-1,NS
DO 50 1-1,M,2
CALL RAND(IP,Y(1))
CALL RAND(IP,Y(2)) p
VAR(I)=SQRT(-2*ALOG(Y(1)))*COS(6.283185*Y(2))

C-64 t.
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50 VAR(I+1)mSQRT(-2*ALOG(Y(1)))*SIN(6.283185*Y(2))

C
C PRODUCE NEW RANDOM VAR.

CDO 71 J-1,M

X(J)-O.O
DO 70 JJ-1,J
70 X(J)-X(J)+VAR(J)*D(JJJ)
71 X(J)-X(J)+XH(J)
C
C WRITE NEW DATA OUT

'S. C .

WRITE (2) (X(L),L-1,M)
WRITE (3) (X(L),L-1,M)

60 CONTINUE
REWIND (3)

1000 CONTINUE
RETURN
END .

C-654 S



FROBRAM C-9. COMPUTE PROBABILITY OF F-RATIO.

SUBROUTINE PRBF(DA ,DB ,FR)
C
C COMPUTE 95% F-RATIO, PROBABILITY BY APPROXIMATING DENSITY FUNCTION
C INTEGRAL. EXCERPT FROM VANDERBILT STAT PACKAGE.
C
C
C WHERE:
C DA - NUMERATOR DEGREES OF FREEDOM
C DB - DENOMINATOR "OF

C PR - F-RATIO 1
C

DATA CO,C1,C2,C3,C4 /1.0, 0.196854, 0.115194, 0.000344, 0.019527/
C
PRBFY 1.
IF (DA .LE. 0. .OR. DB .LE. 0.) RETURN
IF (FR .LE. 0.) RETURN
C
A - DA
B - DB
F - FR 4
IF (F .GT. 0.) GO TO 10
A - DB
B w DA
F - 1./FR

10 A.A - 2./(9.*A)
BB - 2./(9.*B)
FC - F**O.3333333

C ~ .

-~Z - ABS ( (1.-BB)*FC -(1.-AA))/1:

1 SQRT (BB*FC**2 + AA)
IF (B .LT. 4.) Z - Z*(1. + O.08*Z**4/B**3)
C
PREF - 0.5/
1 (CO+Z* (C1+Z*(C2+Z*(C3+Z*C4))))
C
IF (FR .LT. 1.) PREF -1-PREY -
RETURN
END

C-66 r,,4t.
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PROGRAM C-10. COMPUTE POWER OF F-TEST.

SUBROUTINE FPOWR(V,V2,F,PAR)
4~. C

C WOODWARD AND OVERALL (1976)
C COMPUTES THE POWER OF THE F-TEST
C
C Vl - NDF1
C V2- NDF2
C F - VALUE OF THE CENTRAL F-DISTRIBUTION
C PAR- NON-CENTRALITY PARAMETER .-.

C ~
A-((V1*F)/(V1+PAR))**O.333333

C-I .O-(2.O*(V1+2.O*PAR))/(9 .O*((V1+PAR)**2.0))
D-(2.0(Vl+2.0*PAR))/(9.0*((Vl+PAR)**2)) 4

E-(2.0/(9.0*V2))*(((Vl*F)/(Vl+PAR))**0.666666)
D'.SQRT(D+E) \

Z -(A*B-C) ID
Cl-. 196854
C2-. 115194
C3in.000344
C4-.019527
IF(Z) 201,200,200
200 Pin.5/((1.0C1*Z+C2*(Z+Z)+C3*(Z*Z*Z)-C4*(Z*Z*Z*Z))**4)
GO TO 99

201 Z-ABS(Z)
P-O.5/( (1 .04C1*Z+C2*(Z*Z)+C3*(Z*Z*Z)-C4*(Z*Z*Z*Z))**4) i

Pl1.0-P
99 WRITE(OUTC,1) P
1 FORMAT(' POWER OF F-TEST-'FlO.5)
C
RETURN
END

C-67



PROGRAM C-11. REPEATED MEASURES ADJUSTMENT.

SUBROUTINE SUTR(NG,MAN11)
C
C SUBTARCT SUBJECT AND TRIAL EFFECTS FROM RAW DATA.
C

COMMON TABLE(12,9,6,12)
COMMON X(30),SUMD(30,2),SUMDS(302,12),SUMDT(30,2,12)
COMMON /JUNK/NAME ,RNAME ,NCHECK ,M ,MHOLD ,MSTART

COMMON /REP/ISUBJR,NAG
C
INTEGER NAME(40),RNAME(40),NCHECI(40),MSTAT(40),ISUBJR(12),NTR(12),
1 NAG(9),TABLE
C

D'UTIflf10)
REWIND(11)

C
C INITIALIZE SUMS
C A

DO 10 L-1,30
DO 10 1-1,2
SUMD(L,I)=O.
DO 10 K-1,12
SUMDS(L,I,K)-O.
10 SUHDT(L,I,K)-O.
C
C GET SUMS
C
DO 30 1-1,2
READ(1O) N
WRITE(11) N
DO 20 J-1,12

* 20 NTR(J)-O
DO 30 J-1l,12
K2-0
DO 30 K-1,ISUBJR(J)
K2-K2+1

R.EAD(1O) (X(L),L-1,M)
WRITE(11) (X(L),L-1,M)
7 IF(TABLE(J,NAG(l),MAN11,K2).NE.O) GO TO 9
IF(TABLE(J,NAG(2),MAN11,K2).EQ.O) GO TO 11 {
9 K2-K2+1 .

GO TO 7
11 NTR(K2)-NTR(K2)+l
DO 30 Linl,M
Y-X(L)
SUMD(L,I)-SUMD(L,I)+Y

SUMD(L,,J)-UMD(LIJ)r
SUMDT(L,I,J2)-SUMDT(L,IJK)+Y

30 CONTINUE
C

C GET MEANS
C C-68V,



-- ~ ~~D 40 L-1- ,Mwrrrrw.~~-~

DO 40 1-1,2

SUMD(L,I)-SUMD(L,I)/N
'9 DO 50 J-1,12

50 SUMDS(L,I,J)-SUMDS(L,I,J)/ISUBJR(J)
DO 40 K-1,12

40 SUMDT(L,I,K)-StJMDT(L,I,K)/NTR(K)

CDO 120 L=1,5

*WRITE(8,111) LSUMD(L,1),SUMD(L,2)
*DO 140 J-1,12

140 WRITE(8,111) J,SUMDS(L,1,J),SUMDS(L,2,J)
DO 120 1-1,2

120 WRITE(8,113) (SUMDT(LI,K),K-1,12)
111 FORMAT(15,2F8.4)
113 FORMAT(12F8.4/)

* C
C SUBTRACT RESULTS FROM RAW DATA
C
REI.(0

REWIND(10)

DO 60 1-1,2
READ(11) N
WRITE(lO) N
DO 60 J-1,12
K(2-0
DO 60 K-1,ISUBJR(J)
K2-K2+1

13 IF(TABLE(J,NAG(1),MAN11,K2).NE.O) GO TO 15
IF(TABLE(J,NAG(2),MAN11,K2).EQ.O) GO TO 17
15 1(2-1(2+1 A.I

GO TO 13
17 READ(11) (X(L),L-1,M)
DO 80 L-1,M -
80 X(L)=X(L)-SUMDS(L,I,J)-SUMDT(L,I,K2)+2.*SUMD(L,I)

% 11 60 WRITE(1O) (X(L),L-1,M)
V. C

REI (0
REWIND(11)

RETURN
END ~
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